
Verifiable ASICs:
trustworthy hardware with untrusted components

Riad S. Wahby◦?, Max Howald†?,
Siddharth Garg?, abhi shelat‡, and Michael Walfish?

◦Stanford University
?New York University
†The Cooper Union

‡The University of Virginia

May 25th, 2016

Untrusted manufacturers can craft hardware Trojans

Untrusted manufacturers can craft hardware Trojans

Untrusted manufacturers can craft hardware Trojans

Untrusted manufacturers can craft hardware Trojans

Untrusted manufacturers can craft hardware Trojans

Trusted fabrication is not a panacea:

7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 An old fab could mean 108× performance hit
accounting for speed, chip area, and energy

Can we get trust more cheaply?

Can we build Verifiable ASICs?

Principal

F → designs
for P,V

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

Can we build Verifiable ASICs?

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

Can we build Verifiable ASICs?

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

IntegratorV P

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

Can we build Verifiable ASICs?

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

Integrator

V P
input

output

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

Can we build Verifiable ASICs?

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

Integrator

V P
x
y

proof that
y = F(x)

input

output

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes

A qualified success

Zebra: a hardware design that saves costs

. . .

A qualified success

Zebra: a hardware design that saves costs. . .

. . . sometimes.

Probabilistic proof systems, briefly

V P
x
y

proof that
y = F(x)

input

output

F must be expressed as an arithmetic circuit (AC)

AC satisfiable ⇐⇒ F was executed correctly

P convinces V that the AC is satisfiable

generalized boolean circuit over Fp

∧ → × ∨ → +

73

Probabilistic proof systems, briefly

V P
x
y

proof that
y = F(x)

input

output

F must be expressed as an arithmetic circuit (AC)

AC satisfiable ⇐⇒ F was executed correctly

P convinces V that the AC is satisfiable

generalized boolean circuit over Fp

∧ → × ∨ → +

73

Probabilistic proof systems, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ F with RAM, complex control flow

+ Little V-P communication

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– “Quasi–straight line” F

– Lots of V-P communication

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

7 3

Probabilistic proof systems, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ F with RAM, complex control flow

+ Little V-P communication

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– “Quasi–straight line” F

– Lots of V-P communication

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

7 3

Probabilistic proof systems, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ F with RAM, complex control flow

+ Little V-P communication

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– “Quasi–straight line” F

– Lots of V-P communication

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

7

3

Probabilistic proof systems, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ F with RAM, complex control flow

+ Little V-P communication

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– “Quasi–straight line” F

– Lots of V-P communication

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

7 3

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

F must be expressed as a
layered arithmetic circuit.

Note: this is an
abstraction of F,
not a physical circuit!

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit

,
returns output y

3. V cross-examines P
about the last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit

,
returns output y

3. V cross-examines P
about the last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit

,
returns output y

3. V cross-examines P
about the last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit

,
returns output y

3. V cross-examines P
about the last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

y

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer,
ends up with claim about
second-last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer,
ends up with claim about
second-last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer,
ends up with claim about
second-last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer,
ends up with claim about
second-last layer

4. V iterates

, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer,
ends up with claim about
second-last layer

4. V iterates, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates circuit,
returns output y

3. V cross-examines P
about the last layer,
ends up with claim about
second-last layer

4. V iterates, ends up with
claim about inputs

5. V checks consistency
with the inputs

V ’s work ≈ O(depth · log width),
so it saves work when
width � depth

Can we parallelize this interaction?

Can V and P interact about all
of F’s layers at once?

No. V must ask questions in
correct order or P can cheat!

But: Zebra uses pipelining to
parallelize several Fs.

Can we parallelize this interaction?

Can V and P interact about all
of F’s layers at once?

No. V must ask questions in
correct order or P can cheat!

But: Zebra uses pipelining to
parallelize several Fs.

Extracting parallelism through pipelining

V questions P about
F(x1)’s output layer.

F(x1)

Extracting parallelism through pipelining

V questions P about
F(x1)’s output layer.

Simultaneously, P
returns F(x2).

F(x1)

F(x2)

Extracting parallelism through pipelining

V questions P about
F(x1)’s next layer

F(x1)

Extracting parallelism through pipelining

V questions P about
F(x1)’s next layer, and
F(x2)’s output layer.

F(x1)

F(x2)

Extracting parallelism through pipelining

V questions P about
F(x1)’s next layer, and
F(x2)’s output layer.

Meanwhile, P returns
F(x3).

F(x1)

F(x2)

F(x3)

Extracting parallelism through pipelining

This process continues
until the pipeline is full.

F(x1)

F(x2)

F(x3)

F(x4)

Extracting parallelism through pipelining

This process continues
until the pipeline is full.

F(x1)

F(x2)

F(x3)

F(x4)

F(x5)

Extracting parallelism through pipelining

This process continues
until the pipeline is full.

V and P can complete
one proof in each time
step.

F(x1)

F(x2)

F(x3)

F(x4)

F(x5)

F(x6)

F(x7)

F(x8)

Zebra’s design approach

3 Extract parallelism

e.g., pipelined proving

3 Exploit locality

: distribute data and control

e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: distributed state machine

avoids bottlenecks associated with central controller

3 Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits

Zebra’s design approach

3 Extract parallelism

e.g., pipelined proving

3 Exploit locality: distribute data and control

e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: distributed state machine

avoids bottlenecks associated with central controller

3 Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits

Zebra’s design approach

3 Extract parallelism

e.g., pipelined proving

3 Exploit locality: distribute data and control

e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: distributed state machine

avoids bottlenecks associated with central controller

3 Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area

3 Zebra uses 3D integration

Protocol requires input-independent precomputation [Allspice13]

3 Zebra amortizes precomputations over many V-P pairs

Several other details (see paper)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [Allspice13]

3 Zebra amortizes precomputations over many V-P pairs

Several other details (see paper)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [Allspice13]
3 Zebra amortizes precomputations over many V-P pairs

Several other details (see paper)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [Allspice13]
3 Zebra amortizes precomputations over many V-P pairs

Several other details (see paper)

Implementation

Zebra’s implementation includes

• a compiler that produces synthesizable Verilog for P
• two V implementations

• hardware (Verilog)
• software (C++)

• library to generate V ’s precomputations

• Verilog simulator extensions to model
software or hardware V ’s interactions with P

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (see paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (see paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (see paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (see paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Application #1: number theoretic transform

NTT: a Fourier transform over Fp

Widely used, e.g., in computer algebra

Application #1: number theoretic transform
Ratio of baseline energy to Zebra energy

6 7 8 9 10 11 12 13
0.1

0.3

1

3

log
2
(NTT size)

b
a
s
e
lin

e
 v

s
.
Z

e
b
ra

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

Application #2: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive used for ECDH

Application #2: Curve25519 point multiplication
Ratio of baseline energy to Zebra energy

84 170 340 682 1147
0.1

0.3

1

3

Parallel Curve25519 point multiplications

b
a
s
e
lin

e
 v

s
.
Z

e
b
ra

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

A qualified success

Zebra: a hardware design that saves costs. . .

. . . sometimes.

Summary of Zebra’s applicability

Common to essentially all built proof systems

1. Must have a wide gap between cutting-edge fab for P
and trusted fab for V

2. Must amortize precomputations over many instances

3. Computation F must be very large for V to save work

4. Computation F must be efficient as an arithmetic circuit

5. Computation F must have a layered, shallow, deterministic AC

Applies to IPs, but not arguments

Summary of Zebra’s applicability

Common to essentially all built proof systems

1. Must have a wide gap between cutting-edge fab for P
and trusted fab for V

2. Must amortize precomputations over many instances

3. Computation F must be very large for V to save work

4. Computation F must be efficient as an arithmetic circuit

5. Computation F must have a layered, shallow, deterministic AC

Applies to IPs, but not arguments

Summary of Zebra’s applicability

Common to essentially all built proof systems

1. Must have a wide gap between cutting-edge fab for P
and trusted fab for V

2. Must amortize precomputations over many instances

3. Computation F must be very large for V to save work

4. Computation F must be efficient as an arithmetic circuit

5. Computation F must have a layered, shallow, deterministic AC

Applies to IPs, but not arguments

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3

7

Reduce, reuse, recycle 3

7

Argument protocols seem friendly to hardware?

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3 7
Reduce, reuse, recycle 3

7

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3 7
Reduce, reuse, recycle 3 7

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3 7
Reduce, reuse, recycle 3 7

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Recap

V P
x
y

proof that
y = F(x)

input

output

+ Verifiable ASICs: a new approach to building trustworthy
hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

+ Improves performance compared to trusted baseline

– Improvement compared to the baseline is modest

– Applicability is limited:
precomputations must be amortized
computation needs to be “big enough”
large gap between trusted and untrusted technology
does not apply to all computations

https://www.pepper-project.org/

Recap

V P
x
y

proof that
y = F(x)

input

output

+ Verifiable ASICs: a new approach to building trustworthy
hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

+ Improves performance compared to trusted baseline

– Improvement compared to the baseline is modest

– Applicability is limited:
precomputations must be amortized
computation needs to be “big enough”
large gap between trusted and untrusted technology
does not apply to all computations

https://www.pepper-project.org/

Recap

V P
x
y

proof that
y = F(x)

input

output

+ Verifiable ASICs: a new approach to building trustworthy
hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

+ Improves performance compared to trusted baseline

– Improvement compared to the baseline is modest

– Applicability is limited:
precomputations must be amortized
computation needs to be “big enough”
large gap between trusted and untrusted technology
does not apply to all computations

https://www.pepper-project.org/

