
Verifiable ASICs:
trustworthy hardware with untrusted components

Riad S. Wahby◦?, Max Howald†?,
Siddharth Garg?, abhi shelat‡, and Michael Walfish?

◦Stanford University
?New York University
†The Cooper Union

‡The University of Virginia

June 10th, 2016

Setting: ASICs with mutually distrusting designer, manufacturer

chip design
Principal

(government,
chip designer)

Manufacturer
(“foundry”
or “fab”)

Here we are thinking about ASICs, not CPUs:

CPU

RAM

cache

register
file ALU

ASIC

in[0]

in[n]

...
D Q

D Q

Setting: ASICs with mutually distrusting designer, manufacturer

chip design
Principal

(government,
chip designer)

Manufacturer
(“foundry”
or “fab”)

Here we are thinking about ASICs, not CPUs:

CPU

RAM

cache

register
file ALU

ASIC

in[0]

in[n]

...
D Q

D Q

Setting: ASICs with mutually distrusting designer, manufacturer

Firewall

e.g., a network firewall appliance,
with a custom chip for packet processing

What if our packet processing chip has a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.

Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a network firewall appliance

,
with a custom chip for packet processing

What if our packet processing chip has a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)US DoD controls supply chain with trusted foundries.

Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a network firewall appliance

,
with a custom chip for packet processing

What if our packet processing chip has a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.

Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a network firewall appliance

,
with a custom chip for packet processing

What if our packet processing chip has a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)US DoD controls supply chain with trusted foundries.

Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a network firewall appliance

,
with a custom chip for packet processing

What if our packet processing chip has a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

7 So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Can we get trust more cheaply?

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

7 So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Can we get trust more cheaply?

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

7 So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Can we get trust more cheaply?

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

7 So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Can we get trust more cheaply?

Verifiable ASICs

Principal

F → designs
for P,V

Verifiable ASICs

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

Verifiable ASICs

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

IntegratorV P

Verifiable ASICs

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

Integrator

V P
input

output

Verifiable ASICs

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

Integrator

V P
x
y

proof that
y = F(x)

input

output

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

Makes sense if V + P are cheaper
than trusted F

Babai85
GMR85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92
AS92
Micali94
BG02
GOS06
IKO07
GKR08
KR09
GGP10
Groth10
GLR11
Lipmaa11
BCCT12
GGPR13
BCCT13
KRR14
. . .

SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13
Thaler13

BCGTV13
BFRSBW13

BFR13
DFKP13

BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

108×

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

Makes sense if V + P are cheaper
than trusted F

Reasons for hope:
• running time of V < F (asymptotically)

• Implementations exist

• P overheads are massive, but using an
advanced fab might offset these costs

Babai85
GMR85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92
AS92
Micali94
BG02
GOS06
IKO07
GKR08
KR09
GGP10
Groth10
GLR11
Lipmaa11
BCCT12
GGPR13
BCCT13
KRR14
. . .

SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13
Thaler13

BCGTV13
BFRSBW13

BFR13
DFKP13

BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

108×

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

Makes sense if V + P are cheaper
than trusted F

Reasons for hope:
• running time of V < F (asymptotically)

• Implementations exist

• P overheads are massive, but using an
advanced fab might offset these costs

Babai85
GMR85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92
AS92
Micali94
BG02
GOS06
IKO07
GKR08
KR09
GGP10
Groth10
GLR11
Lipmaa11
BCCT12
GGPR13
BCCT13
KRR14
. . .

SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13
Thaler13

BCGTV13
BFRSBW13

BFR13
DFKP13

BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

108×

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

Makes sense if V + P are cheaper
than trusted F

Reasons for hope:
• running time of V < F (asymptotically)

• Implementations exist

• P overheads are massive, but using an
advanced fab might offset these costs

Babai85
GMR85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92
AS92
Micali94
BG02
GOS06
IKO07
GKR08
KR09
GGP10
Groth10
GLR11
Lipmaa11
BCCT12
GGPR13
BCCT13
KRR14
. . .

SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13
Thaler13

BCGTV13
BFRSBW13

BFR13
DFKP13

BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

108×

Can we build Verifiable ASICs?

V P
x
y

proof that
y = F(x)

input

output Fvs.

Makes sense if V + P are cheaper
than trusted F

Reasons for hope caution:
• Theory is silent about feasibility

• Onus is heavier than in prior work

• Hardware issues: energy, chip area

• Need physically realizable circuit design

• Need V to save for plausible computation sizes

Babai85
GMR85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92
AS92
Micali94
BG02
GOS06
IKO07
GKR08
KR09
GGP10
Groth10
GLR11
Lipmaa11
BCCT12
GGPR13
BCCT13
KRR14
. . .

SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13
Thaler13

BCGTV13
BFRSBW13

BFR13
DFKP13

BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

108×

A qualified success

Zebra: a hardware design that saves costs

. . .

. . . sometimes.

A qualified success

Zebra: a hardware design that saves costs. . .

. . . sometimes.

Probabilistic proof protocols, briefly

V P
x
y

proof that
y = F(x)

input

output

F must be expressed as an arithmetic circuit (AC)

AC satisfiable ⇐⇒ F was executed correctly

P convinces V that the AC is satisfiable

generalized boolean circuit over Fp

∧ → × ∨ → +What about other schemes? e.g.,
FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], . . .

These all seem a bit further from practicality.

73

Probabilistic proof protocols, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ nondeterministic ACs,
arbitrary connectivity

+ Few rounds (≤ 3)

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– deterministic ACs;
layered, low depth

– Many rounds

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

What about other schemes? e.g.,
FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], . . .

These all seem a bit further from practicality.

7 3

Probabilistic proof protocols, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ nondeterministic ACs,
arbitrary connectivity

+ Few rounds (≤ 3)

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– deterministic ACs;
layered, low depth

– Many rounds

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

What about other schemes? e.g.,
FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], . . .

These all seem a bit further from practicality.7 3

Probabilistic proof protocols, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ nondeterministic ACs,
arbitrary connectivity

+ Few rounds (≤ 3)

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– deterministic ACs;
layered, low depth

– Many rounds

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

What about other schemes? e.g.,
FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], . . .
These all seem a bit further from practicality.

7 3

Probabilistic proof protocols, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ nondeterministic ACs,
arbitrary connectivity

+ Few rounds (≤ 3)

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– deterministic ACs;
layered, low depth

– Many rounds

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

What about other schemes? e.g.,
FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], . . .

These all seem a bit further from practicality.

7 3

Probabilistic proof protocols, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ nondeterministic ACs,
arbitrary connectivity

+ Few rounds (≤ 3)

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– deterministic ACs;
layered, low depth

– Many rounds

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

What about other schemes? e.g.,
FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], . . .

These all seem a bit further from practicality.

7

3

Probabilistic proof protocols, briefly

V P
x
y

proof that
y = F(x)

input

output

Arguments [GGPR13,
SBVBPW13, PGHR13, BCTV14]

e.g., Zaatar, Pinocchio, libsnark

+ nondeterministic ACs,
arbitrary connectivity

+ Few rounds (≤ 3)

Unsuited to hardware
implementation

IPs
[GKR08, CMT12, VSBW13]

e.g., Muggles, CMT, Allspice

– deterministic ACs;
layered, low depth

– Many rounds

Suited to hardware
implementation

generalized boolean circuit over Fp

∧ → × ∨ → +

What about other schemes? e.g.,
FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], . . .

These all seem a bit further from practicality.

7 3

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

F must be expressed as a
layered arithmetic circuit.

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

y

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

Soundness error ∝ p−1

Cost to execute F directly:
O(depth · width)

V ’s sequential running time:
O(depth · log width + |x | + |y |)
(assuming precomputed queries)

P ’s sequential running time:
O(depth · width · log width)

V Px
y

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

Soundness error ∝ p−1

Cost to execute F directly:
O(depth · width)

V ’s sequential running time:
O(depth · log width + |x | + |y |)
(assuming precomputed queries)

P ’s sequential running time:
O(depth · width · log width)

V Px
y

... sum-check
[LFKN90]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

Soundness error ∝ p−1

Cost to execute F directly:
O(depth · width)

V ’s sequential running time:
O(depth · log width + |x | + |y |)
(assuming precomputed queries)

P ’s sequential running time:
O(depth · width · log width)

V Px
y

... sum-check
[LFKN90]

more sum-checks

Extracting parallelism in Zebra

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

Proving step: Can V and P
interact about all of F’s layers
at once?

No. V must ask questions in
order or soundness is lost.

But: there is still parallelism to
be extracted. . .

Extracting parallelism in Zebra

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

Proving step: Can V and P
interact about all of F’s layers
at once?

No. V must ask questions in
order or soundness is lost.

But: there is still parallelism to
be extracted. . .

Extracting parallelism in Zebra

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

Proving step: Can V and P
interact about all of F’s layers
at once?

No. V must ask questions in
order or soundness is lost.

But: there is still parallelism to
be extracted. . .

Extracting parallelism in Zebra

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

Proving step: Can V and P
interact about all of F’s layers
at once?

No. V must ask questions in
order or soundness is lost.

But: there is still parallelism to
be extracted. . .

Extracting parallelism in Zebra’s P

V questions P about
F(x1)’s output layer.

F(x1)

Extracting parallelism in Zebra’s P

V questions P about
F(x1)’s output layer.

Simultaneously, P
returns F(x2).

F(x1)

F(x2)

Extracting parallelism in Zebra’s P

V questions P about
F(x1)’s next layer

F(x1)

Extracting parallelism in Zebra’s P

V questions P about
F(x1)’s next layer, and
F(x2)’s output layer.

F(x1)

F(x2)

Extracting parallelism in Zebra’s P

V questions P about
F(x1)’s next layer, and
F(x2)’s output layer.

Meanwhile, P returns
F(x3).

F(x1)

F(x2)

F(x3)

Extracting parallelism in Zebra’s P

This process continues. . .

F(x1)

F(x2)

F(x3)

F(x4)

Extracting parallelism in Zebra’s P

This process continues. . .

F(x1)

F(x2)

F(x3)

F(x4)

F(x5)

Extracting parallelism in Zebra’s P

This process continues
until V and P interact
about every layer
simultaneously—but for
different computations.

V and P can complete
one proof in each time
step.

F(x1)

F(x2)

F(x3)

F(x4)

F(x5)

F(x6)

F(x7)

F(x8)

Extracting parallelism in Zebra’s P with pipelining

Input (x)

Output (y)

prove

prove

prove

Sub-prover, layer 0

Sub-prover, layer 1

Sub-prover, layer d −1

V

P
queries

responses

queries

responses

queries

responses

.

.

.

.

.

.

This approach is just a standard hardware technique, pipelining;
it is possible because the protocol is naturally staged.

There are other opportunities to leverage the protocol’s structure.

Extracting parallelism in Zebra’s P with pipelining

Input (x)

Output (y)

prove

prove

prove

Sub-prover, layer 0

Sub-prover, layer 1

Sub-prover, layer d −1

V

P
queries

responses

queries

responses

queries

responses

.

.

.

.

.

.

This approach is just a standard hardware technique, pipelining;
it is possible because the protocol is naturally staged.

There are other opportunities to leverage the protocol’s structure.

Per-layer computations

For each sum-check round, P
sums over each gate in a layer

,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:

gate
prover

δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover

δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover

δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover

δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover

δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover

δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover

δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover

δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:

gate
prover

δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover

δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover

δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover

δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover

δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover

δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover

δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover

δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:

gate
prover

δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover

δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover

δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover

δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover

δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover

δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover

δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover

δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:
gate

prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:
gate

prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:
gate

prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:
gate

prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:
gate

prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:
gate

prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:
gate

prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k ∈ {0, 1, 2}

In software:
// compute H[0],H[1],H[2]
for k ∈ {0, 1, 2}:
H[k] ← 0
for g ∈ layer:
H[k] ← H[k] + δ(g, k)
// δ uses state[g]

// update lookup table
// with V’s random coin
for g ∈ layer:
state[g] ← δ(g, rj)

layer:
H[k] =

∑
g∈layer

δ(g , k)

In hardware:

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

RAM

+ +
+

Adder tree

state[0]

gate
prover
δ(0, 0)

δ(0, 1)

δ(0, 2)

δ(0, rj)

state[1]

gate
prover
δ(1, 0)

δ(1, 1)

δ(1, 2)

δ(1, rj)

state[2]

gate
prover
δ(2, 0)

δ(2, 1)

δ(2, 2)

δ(2, rj)

state[3]

gate
prover
δ(3, 0)

δ(3, 1)

δ(3, 2)

δ(3, rj)

. . .

+ +
+

Adder tree

Zebra’s design approach

3 Extract parallelism

e.g., pipelined proving
e.g., parallel evaluation of δ by gate provers

3 Exploit locality: distribute data and control

e.g., no RAM: data is kept close to places it is needed

e.g., latency-insensitive design: localized control

3 Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits

Zebra’s design approach

3 Extract parallelism

e.g., pipelined proving
e.g., parallel evaluation of δ by gate provers

3 Exploit locality: distribute data and control

e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: localized control

3 Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits

Zebra’s design approach

3 Extract parallelism

e.g., pipelined proving
e.g., parallel evaluation of δ by gate provers

3 Exploit locality: distribute data and control

e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: localized control

3 Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area

3 Zebra uses 3D integration

Protocol requires input-independent precomputation [VSBW13]

3 Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity

7 Give V trusted storage? Cost would be prohibitive
3 Zebra uses untrusted storage + authenticated encryption

V

P
x
y

proof that
y = F(x)

input

output
prei

V P
x
y

proof that
y = F(x)

input

outputEk(prei)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [VSBW13]

3 Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity

7 Give V trusted storage? Cost would be prohibitive
3 Zebra uses untrusted storage + authenticated encryption

V

P
x
y

proof that
y = F(x)

input

output
prei

V P
x
y

proof that
y = F(x)

input

outputEk(prei)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [VSBW13]

3 Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity

7 Give V trusted storage? Cost would be prohibitive
3 Zebra uses untrusted storage + authenticated encryption

V

P
x
y

proof that
y = F(x)

input

output
prei

V P
x
y

proof that
y = F(x)

input

outputEk(prei)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [VSBW13]
3 Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity

7 Give V trusted storage? Cost would be prohibitive
3 Zebra uses untrusted storage + authenticated encryption

V

P
x
y

proof that
y = F(x)

input

output
prei

V P
x
y

proof that
y = F(x)

input

outputEk(prei)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [VSBW13]
3 Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity
7 Give V trusted storage? Cost would be prohibitive

3 Zebra uses untrusted storage + authenticated encryption

V

P
x
y

proof that
y = F(x)

input

output
prei

V P
x
y

proof that
y = F(x)

input

outputEk(prei)

Architectural challenges

Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area
3 Zebra uses 3D integration

Protocol requires input-independent precomputation [VSBW13]
3 Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity
7 Give V trusted storage? Cost would be prohibitive
3 Zebra uses untrusted storage + authenticated encryption

V

P
x
y

proof that
y = F(x)

input

output
prei

V P
x
y

proof that
y = F(x)

input

outputEk(prei)

Implementation

Zebra’s implementation includes

• a compiler that produces synthesizable Verilog for P
• two V implementations

• hardware (Verilog)
• software (C++)

• library to generate V ’s precomputations

• Verilog simulator extensions to model
software or hardware V ’s interactions with P

. . . and it seemed to work really well!
Zebra can produce 10k–100k proofs per second,
while existing systems take tens of seconds per proof!

But that’s not a serious evaluation. . .

. . . and it seemed to work really well!
Zebra can produce 10k–100k proofs per second,
while existing systems take tens of seconds per proof!

But that’s not a serious evaluation. . .

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (discussed in paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (discussed in paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (discussed in paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Evaluation method

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (discussed in paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab

Application #1: number theoretic transform

NTT: a Fourier transform over Fp

Widely used, e.g., in computer algebra

Application #1: number theoretic transform
Ratio of baseline energy to Zebra energy

6 7 8 9 10 11 12 13
0.1

0.3

1

3

log
2
(NTT size)

b
a
s
e
lin

e
 v

s
.
Z

e
b
ra

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

Application #2: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive, e.g., for ECDH

Application #2: Curve25519 point multiplication
Ratio of baseline energy to Zebra energy

84 170 340 682 1147
0.1

0.3

1

3

Parallel Curve25519 point multiplications

b
a
s
e
lin

e
 v

s
.
Z

e
b
ra

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

A qualified success

Zebra: a hardware design that saves costs. . .

. . . sometimes.

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3

7

Reduce, reuse, recycle 3

7

Argument protocols seem friendly to hardware?

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3 7
Reduce, reuse, recycle 3

7

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3 7
Reduce, reuse, recycle 3 7

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3 7
Reduce, reuse, recycle 3 7

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Summary of Zebra’s applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances

4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

System Amortization regime Advice

Zebra many V-P pairs short

Allspice
[VSBW13]

batch of instances
of a particular F

short

Bootstrapped
SNARKs
[BCTV14a,
CTV15]

all computations long

BCTV
[BCTV14b]

all computations
of the same length

long

Pinocchio
[PGHR13]

all future instances
of a particular F

long

Zaatar
[SBVBPW13]

batch of instances
of a particular F

long

Exception: [CMT12] with logspace-uniform ACs

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V ’s work: 6 ms + (|x |+ |y |) · 3 µs on a 2.7 GHz CPU

⇒ break-even point ≥ 16× 106 CPU ops

With 32 GB RAM, libsnark handles ACs with ≤ 16× 106 gates

⇒ breaking even requires > 1 CPU op per AC gate, e.g.,
computations over Fp rather than machine integers

Recap

V P
x
y

proof that
y = F(x)

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

+ Improves performance compared to trusted baseline

– Improvement compared to the baseline is modest

– Applicability is limited:
precomputations must be amortized
computation needs to be “big enough”
large gap between trusted and untrusted technology
does not apply to all computations

Bottom line: Zebra is plausible—when it applieshttps://www.pepper-project.org/

Recap

V P
x
y

proof that
y = F(x)

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

+ Improves performance compared to trusted baseline

– Improvement compared to the baseline is modest

– Applicability is limited:
precomputations must be amortized
computation needs to be “big enough”
large gap between trusted and untrusted technology
does not apply to all computations

Bottom line: Zebra is plausible—when it applieshttps://www.pepper-project.org/

Recap

V P
x
y

proof that
y = F(x)

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

+ Improves performance compared to trusted baseline

– Improvement compared to the baseline is modest

– Applicability is limited:
precomputations must be amortized
computation needs to be “big enough”
large gap between trusted and untrusted technology
does not apply to all computations

Bottom line: Zebra is plausible—when it applieshttps://www.pepper-project.org/

