
Program Representations (1)

Michael Walfish

Dept. of Computer Science, Courant Institute, NYU

Bar-Ilan Winter School on Verifiable Computation
Class 7

January 5, 2016

Let’s clarify a few things from class 5:

•  What are the constraints C’ versus the constraints C?

•  How does the assignment z (satisfying or not) affect V’s checks?

•  How and why do QAPs dramatically improve the picture?

prover
commit request

commit response

q1�v q2�v q3�v

L(�) = <�,v>

Attempt 3: Use long PCPs interactively (summary)
[IKO07, SMBW12]

Achieves simplicity, with good constants …

… and prover’s work is quadratic; address that shortly

ACCEPT/
REJECT

z ⊗ z

z

v

queries: q1, q2, q3, …

verifier

Hadamard
encoding of v

...

… but pre-processing is required (because |qi|=|v|)

prover

E(q1�v) E(q2�v) E(q3�v)

L(�) = <�,v>

Attempt 4: Use long PCPs non-interactively
[BCIOP13]

ACCEPT/
REJECT

z ⊗ z

z

v

E(q1), E(q2), E(q3)…

verifier

Hadamard
encoding of v

...

Query process now happens “in the exponent”

… prover’s work still quadratic; addressing that soon

… pre-processing still required (again because |qi|=|v|)

preprocessing
SNARG

efficient (short)
PCPs

arguments,
CS proofs

arguments w/
preprocessing

SNARGs w/
preprocessing

who ALMSS92, AS92,
BGSHV, Dinur, …

Kilian92,
Micali94

IKO07, SMBW12,
SVPBBW12

Groth10, GGPR12,
BCIOP13, …

what classical PCP commit to
PCP by
hashing

commit to long
PCP using
linearity

encrypt queries to
a long PCP

security unconditional CRHFs linearly HE knowledge-of-
exponent

why/why not not efficient
for V

constants are
unfavorable

simple simple, non-
interactive

Recap

(Thanks to Rafael Pass.)

z

h

PCP structure implicit in GGPR. Made explicit in [BCIOP13, SBVBBW13].

[Groth10, Lipmaa12, GGPR12]

Final attempt: apply linear query structure to GGPR’s QAPs

prover

L(�) {
 return <�,v>;
}

z ⊗ z

z

v
queries

Addresses the issue of quadratic costs.

•  standard assumptions
•  amortize over batch
•  interactive

•  non-falsifiable assumptions
•  amortize indefinitely
•  non-interactive, ZK, …

plaintext
queries

linear PCP via QAPs

queries in
exponent

“Pinocchio,” “libsnark”
[PGHR13, BCTV14b]

“Zaatar”
[SBVBBW13]

interactive
argument

[IKO07]

SNARG, zk-SNARK with
preprocessing
[Groth10, BCCT12, GGPR12]

preprocessing lowered to
(high) constant
[BCCT13, BCTV14a, CTV15]

Summary of published argument implementations

[GGPR13]

QAPs play the same role (but much, much better!) as “Q(z) plus the [z, z ⊗ z]
encoding” (which is from [ALMSS92]; see [SMBW12, Apdx A] for a self-contained
listing). This works because QAPs have a linear query structure, meaning that the
query is a vector and the response is the dot product with a fixed vector).

Onto the front-end…....

This session: front-end techniques

§  Key ideas: arithmetization, the convenience of non-determinism,
data-dependent control flow, the price of generality, amortization

front-end
(program to circuit/constraints translator)

prover

verifier

back-end
(prob. proof)

x y

… “CPU”

main(){
 ...
}

“ASIC”
structured

arbitrary

Recall the technical role of the front-end: given computation f, produce constraints C,
where C is degree-2 constraints over 𝔽 and variables (X, Y, Z) s.t.
∀x,y: ∃ w s.t. y=f(x,w) ⟺ C(X=x,Y=y) is satisfiable

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest PCD &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

arbitrary ASIC

CPU

structured ASIC

interactive
proofs (IPs)

args

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest PCD &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

arbitrary ASIC

CPU

structured ASIC

interactive
proofs (IPs)

args

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest PCD &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

arbitrary ASIC

CPU

structured ASIC

interactive
proofs (IPs)

args

This session: front-end techniques

§  Key ideas: arithmetization, the convenience of non-determinism,
data-dependent control flow, the price of generality, amortization

§  Focus on “non-deterministic ASICs”; provides intuition for the rest

front-end
(program to circuit/constraints translator)

prover

verifier

back-end
(prob. proof)

x y

… “CPU”

main(){
 ...
}

“ASIC”
structured

arbitrary

(1)  Arithmetization: from programs to constraints

(2) Enhancing expressiveness: data-dependent control flow

(3) Costs and comparisons

Rest of this session

We will walk through the process of transforming a program into
equivalent constraints (arithmetization):

• How program structures translate.

• How the translation is automated by a C compiler.

• How the translation targets the format required by the back-end.

A lot of this is folklore (not many references, but see Braun’s thesis
[Braun12] and the appendices of Ginger [SVPBBW12]).

We will work over the field Fp (the integers mod a prime, p). Let’s
begin with a warmup . . .

Assignment allocates a fresh constraint variable (circuit wire):

a = 4;

a = a + 3;
=⇒

Boolean functions turn into arithmetic:

// assume x1 and x2 are 0-1 valued

y = x1 AND x2; =⇒
y = x1 OR x2; =⇒

EXERCISE: Fill in the equivalent constraints for the functions below:

y = NOT x1; =⇒
y = x1 NAND x2; =⇒
y = x1 NOR x2; =⇒
y = x1 XOR x2; =⇒

Equality checks are efficient:

// x1 and x2 need not be Boolean

z3 = (z1 != z2) ? 1 : 0; =⇒

Observe: the constraints exploit “non-determinism” . . . even though the
computation is deterministic.

EXERCISE: Fill in the equivalent constraints for the function below:

y = (x1 == x2) ? 1 : 0; =⇒

Conditionals require constraints (or gates) for each branch:

if (x1)

y = x2;

else

y = x3;

=⇒

EXERCISE: Fill in the equivalent constraints for the excerpt below:
if (z1 == 3)

z2 = 10;

else if (z1 == 5)

z2 = 20;

else

z2 = 30;

=⇒

EXERCISE: Fill in the equivalent constraints for the excerpt below:
// assume z1, z2 are already defined

if (z3 == 9)

z1 = z1 + 6;

else

z2 = z2 + 10;

=⇒

Loops are unrolled:

i=0;

for (j=0; j<10; j++) {

i++;

}

=⇒





Z = 0,
Z0 = Z + 1,
Z1 = Z0 + 1,

...
Z9 = Z8 + 1





Loop bounds must be static (for now).

EXERCISE (primitive load): (a) Write a program in pseudocode that takes two
inputs: an array of some fixed size (which you can represent as a vector of
variables) and an index in the array. Return the value at the specified index in
the array. (b) Translate your program into constraints. (c) What’s the most
efficient set (smallest number) of constraints that you can produce for this
program?

EXERCISE (Challenge!): Your solution to the previous exercise probably had
O(m) constraints, where m is the size of the input array. Can you lower the
number of constraints to O(log m)? (This will also require changing the input
specification.)

Negative numbers require care. (Fp has no notion of “less than zero”.)

What about order comparisons (such as x1 < x2)?

if (x1 < x2)

y = 3;

else

y = 4;

=⇒





M{C<},
M(Y − 3) = 0,
(1−M){C>=},
(1−M)(Y − 4) = 0





C< =





B0(1− B0) = 0,
B1(2− B1) = 0,
. . .





Cost: O(w), where w is bit width of variables.

EXERCISE: Write down constraints for <= and >.

EXERCISE: Write down constraints for z3 = z2 | z1, where | is bitwise or.

EXERCISE (Challenge!): So far, we have presumed that the original
computation was working over the integers; we then mapped integer
operations into Fp, and from there to constraints. Extend this model to rational
numbers: let the program work (in principle) over Q, identify a suitable finite
field for the constraints, and describe how to translate operations to
constraints.
Hint: Show that there is a choice of p for which a computation over Q/p (the quotient

field of Fp) is isomorphic to a computation over Q. How will you handle the order

comparisons (<, etc.)?

The foregoing process is automated. A compiler for (a subset of) C:

• Transforms the input program to single assignment

• Uses “pseudoconstraints” for some of the assignments

• Outputs constraints and annotations (hints for the prover)

By tracking the sizes of intermediate values, the compiler:

• Infers lower bound on prime p.
I Example: for matrix multiplication, compiler is told that inputs are

signed N bits. Compiler can infer that p must be at least m · 22N .

• Produces only necessary bitwise constraints.

For more about the mechanics of compilation, see Braun’s thesis [Braun12]; a
summary is in Pantry [BFRSBW13; §2, §7]. See also Ginger [SVPBBW12]
and Pinocchio [PGHR13].

The compiler must obey the constraint format required by the back-end:

• Degree-2, and possibly also:

• Quadratic form, meaning pA · pB = pC, where each p is a degree-1
polynomial. This is needed for QAP-based back-ends [GGPR13].

EXERCISE: Assuming C consists of degree-2 constraints, describe a
(straightforward) reduction from M{C} to a set of degree-2 constraints. What
is the cost of the reduction, in terms of extra variables and constraints
introduced?

EXERCISE: Consider the constraint {3 · Z1Z2 + 2 · Z3Z4 + Z5 − Z6 = 0}.
Replace this with three constraints in quadratic form.

EXERCISE: What is the cost, in terms of the number of extra variables and
constraints, of transforming a set of degree-2 constraints C to a set C’ in
quadratic form? What is the worst case? Do “usual” computations experience
the worst case?

The compiler must obey the constraint format required by the back-end:

• Degree-2, and possibly also:

• Quadratic form, meaning pA · pB = pC, where each p is a degree-1
polynomial. This is needed for QAP-based back-ends [GGPR13].

(“Quadratic Form” = “R1CS”)

Question: what are the R1CS constraints for matrix multiplication?

Digression: What is Freivalds algorithm for matrix multiplication?

(1)  Arithmetization: from programs to constraints

(2) Enhancing expressiveness: data-dependent control flow

(3) Costs and comparisons

What happens when loops are nested?

i=0;

for (j=0; j<10; j++) {

i++;

for (k=0; k<2; k++) {

i=i*2;

}

}

=⇒





Z = 0,
Z0 = Z +1, // j == 0

Z1 = Z0 · 2, // k == 0

Z2 = Z1 · 2, // k == 1

Z3 = Z2+1, // j == 1

Z4 = Z3 · 2, // k == 0

Z5 = Z4 · 2, // k == 1

· · ·





Inner loop unrolls into every iteration of outer loop.

What if the loop bounds were data-dependent?

What happens when loops are nested?

i=0;

for (j=0; j<10; j++) {

i++;

for (k=0; k<2; k++) {

i=i*2;

}

}

=⇒





Z = 0,
Z0 = Z +1, // j == 0

Z1 = Z0 · 2, // k == 0

Z2 = Z1 · 2, // k == 1

Z3 = Z2+1, // j == 1

Z4 = Z3 · 2, // k == 0

Z5 = Z4 · 2, // k == 1

· · ·





Inner loop unrolls into every iteration of outer loop.

What if the loop bounds were data-dependent?

Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

1. Read (inchar,length) pair.
2. Emit inchar, length times.

1

2

Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do { /* bound=OUTLENGTH */

output[j++] = inchar;

length--;

} while (length > 0);

}

At one extreme, a single character’s run length could be OUTLENGTH.

Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) { /* bound=OUTLENGTH */

inchar = input[i++];

length = input[i++];

do { /* bound=OUTLENGTH */

output[j++] = inchar;

length--;

} while (length > 0);

}

At the other extreme, every character’s run length could be 1,
and the outer loop would iterate OUTLENGTH times.

Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) { /* bound=OUTLENGTH */

inchar = input[i++];

length = input[i++];

do { /* bound=OUTLENGTH */

output[j++] = inchar;

length--;

} while (length > 0);

}

Thus, the compiler must unroll the inner loop to OUTLENGTH2 iterations,
even though the computation is linear in OUTLENGTH.

Observations:

1. Loop nests are equivalent to finite state machines (FSMs) . . .

2. . . . but FSMs are more efficiently represented in constraints

Idea: transform loop nests into FSMs.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}

How can a compiler perform such a transformation systematically?

Step 1: build a control flow graph:

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

• Identify vertices: straight line code segments.
• Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2
length > 0

length <= 0

Step 1: build a control flow graph:

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

• Identify vertices: straight line code segments.

• Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2

length > 0

length <= 0

Step 1: build a control flow graph:

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

• Identify vertices: straight line code segments.
• Identify edges: control flow between segments.

1 transitions to 2 unconditionally.

2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2

length > 0

length <= 0

Step 1: build a control flow graph:

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

• Identify vertices: straight line code segments.
• Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.

2 transitions to 1 when length <= 0.

1

2
length > 0

length <= 0

Step 1: build a control flow graph:

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

• Identify vertices: straight line code segments.
• Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2
length > 0

length <= 0

Step 2: from the control flow graph

, output the finite state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}

1

2
length > 0

length <= 0

Step 2: from the control flow graph, output the finite state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}

1

2
length > 0

length <= 0

Step 2: from the control flow graph, output the finite state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}

The technique generalizes to break, continue, arbitrary nesting,
sequential loops, etc.

The whole thing works by source-to-source translation: from a program
with tested loops to one in FSM form, and from there into constraints.

The technique is detailed in Buffet [WSRBW15]; it is inspired by, and
extends, loop flattening from the parallel compilers literature [GF95, KNP05,

YCFVEEGH08, Knijnenburg98, Polychron87].

Caveats:

• Programmer must tell compiler # of steps to unroll the FSM.

• No “program memory”⇒ no function pointers.

EXERCISE: Transform the code below to a FSM. Assume that a bound is
known on the total number of iterations that your FSM will take.

// assume k is initialized earlier

// assume x is user-supplied input

while (j < MAX1) {

k = k + 1;

for (i = 0; i < x; i++) {

if (i + j == k) {

break;

}

j = j + 1;

}

j = j + 2;

}

CPU state:
pc, regs, …

A more general solution to data-dependent loop bounds
[BCTV14b, BCGTV13]

…

fetch-decode-
execute 0

CPU state:
pc, regs, …

fetch-decode-
execute T

CPU state:
pc, regs, …

fetch-decode-
execute 1

Great programmability: handles all of C (but still requires bounded
execution, because programmer selects # of CPU steps.)

preview

The state variable in the FSM is like a coarse program counter …
... what if the constraints modeled a program counter, registers, etc.?

An important question, when considering expressiveness,
is how one represents RAM computations inside the
circuit or constraint formalism. There are multiple
approaches to this problem; time permitting, we may cover
this topic.

For now, note that [BCTV14b] has an innovative solution,
based on permutation networks, and assuming the “CPU
approach”. Buffet [WSRBW15] borrows this solution and
adapts it to the “ASIC approach”.

A self-contained, short description of [BCTV14b]’s solution is
in section 2.3 of [WSRBW15].

(1)  Arithmetization: from programs to constraints

(2) Enhancing expressiveness: data-dependent control flow

(3) Costs and comparisons

Costs arise from the front-end, the back-end, and their interaction

Goals:

§  Understand concrete costs

§  Understand the different amortization regimes

§  Understand current trade-offs

Plan:

§  Compare front-ends, by holding back-end constant

§  Compare back-ends on two different circuits

§  Examine various metrics (mostly running times)

§  Examine the amortization regimes

Front-end comparison

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized
implementation of Pinocchio/GGPR [PGHR13, GGPR13].

Front-ends: implementations or re-implementations of

§  Zaatar (ASIC) [SBVBPW13]

§  BCTV (CPU) [BCTV14b]

§  Buffet (ASIC) [WSRHBW15]

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest PCD &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

Evaluation platform: cluster at Texas Advanced Computing Center (TACC)

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB of RAM.

Front-end comparison

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized
implementation of Pinocchio/GGPR [PGHR13, GGPR13].

Front-ends: implementations or re-implementations of

§  Zaatar (ASIC) [SBVBPW13]

§  BCTV (CPU) [BCTV14b]

§  Buffet (ASIC) [WSRHBW15]

(1)  What are the verifier’s costs?

(2)  What are the prover’s costs?

(3)  How do the front-ends compare to each other?

(4)  Are the constants good or bad?

Proof length 288 bytes

V per-instance 6 ms + (|x| + |y|)･3 µs

V pre-processing |C|･180 µs

P per-instance |C|･60 µs +|C|log |C|･0.9µs

P’s memory requirements O(|C|log|C|)

(|C|: circuit size)

Extrapolated prover execution time, normalized to Buffet

How does the prover’s cost vary with the choice of front-end?

Extrapolated prover execution time, normalized to native execution

All of the front-ends have terrible concrete performance

approach ASIC CPU ASIC

m × m
mat. mult

215 7 215

merge sort
m elements

256 32 512

KMP
str len: m
substr len: k

m=320,
k=32

m=160,
k=16

m=2900,
k=256

Zaatar BCTV Buffet

The data reflect a “gate budget” of ≈107 gates.

Pre-processing costs 10-30 minutes; proving costs 8-13 minutes

The maximum input size is far too small to be called practical

Back-end comparison

§  Data are from our re-implementations and match or exceed
published results.

§  All experiments are run on the same machines (2.7Ghz, 32GB
RAM). Average 3 runs (experimental variation is minor).
§  For a few systems, we extrapolate from detailed microbenchmarks

§  Benchmarks: 128×128 matrix multiplication and clustering
algorithm

1.  What is the per-instance verification cost?

2.  What are the cross-over points?

3.  What is the server’s overhead versus native execution?

instances

CPU time

computation costs

verification costs

cross-over
point

ve
ri

fi
ca

ti
on

 c
os

t
(m

s
of

 C
P

U
 ti

m
e)

102

1011

108

105

1014

1017

0

1020

1023

1026

baseline 2
(103 ms)

baseline 1
(3.5 ms)

Ishai et al. (PCP-based efficient argument)

Pep
pe

r

CM
T

G
in

ge
r

128⨉128 matrix multiplication

Pin
occ

hio

Zaa
tar

Alls
pi

ce

Verification cost sometimes beats (unoptimized)
native execution.

0

3

6

9

12

15

0 2k 4k 6k 8k

local (slo
pe: 103 ms/inst)

Zaatar (slope: 26 ms/inst)

ve
ri

fi
ca

ti
on

 c
os

t
(m

in
ut

es
 o

f
C

P
U

 ti
m

e)

number of instances

Ginger (slope: 14 ms/inst)
cross-over point: 980k instances

Pinocchio (slope: 10 ms/inst)

1 day

...
.

CMT (slope: 36 ms/inst) Allspice (slope: 35 ms/inst)

9 months

...
.

cross-over point: 265M instances

Thaler (slope: 12 ms/inst)

TinyRAM (slope: 10 ms/inst)

101

105

0

109

103

107

1011

w
or

ke
r’

s
co

st

no
rm

al
iz

ed
 to

 n
at

iv
e

C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

The prover’s costs are rather high.

Amortization comparison (of built systems)

Systems [CMT12, VSBW13, Thaler13] derived from [GKR08] require little or no
amortization (but have some expressivity limitations)

Of the schemes that handle arbitrary circuits (that is, those based on
arguments), preprocessing costs amortize differently. Ordered best to worst:

1. Bootstrapped GGPR-based SNARKs [BCTV14a, CTV15]

§  Constant preprocessing; amortize over all computations (but
concrete costs to prover are extremely high).

2. BCTV [BCTV14b]: “CPU” front-end + non-interactive GGPR back-end

§  Amortize over all future computations of the same length

3. Pinocchio [PGHR13]: “ASIC” front-end + non-interactive GGPR back-end

§  Amortize over all future uses of a given computation

4. Zaatar [SBVBPW13]: “ASIC” front-end + interactive GGPR/IKO back-end

§  Amortize over a batch of instances of a given computation

Summary of concrete performance

§  Front-end: generality brings a concrete price (but better in theory)

§  Verifier’s “variable costs”: genuinely inexpensive

§  Verifier’s “pre-processing”: depends on setting

§  Prover’s computational costs: mostly disastrous

§  Memory: creates scaling limit for verifier and prover

Performance is plausibly acceptable in certain settings …

§  It must be “regular” (to avoid setup costs), or there must be many
identical instances (to amortize setup costs)

§  The given computation needs to be small

… But none of the systems is at true practicality

Summary of front-ends

“ASIC”

circuit is unrolled CPU execution

§  Verbose (costly)

§  Good amortization

§  Great programmability

§  Concise

§  Amortization worse

§  Programmability not bad

“CPU”

each line translates to gates/constraints

[SVPBBW12, SBVBPW13, VSBW13, PGHR13,

BFRSBW13, BCGGMTV14, BBFR14, FL14,
KPPSST14, WSRBW15, CFHKKNPZ15]

[BCGTV13, BCTV14a, BCTV14b, CTV15]

C prog MIPS
.exe

CPU state

…

fetch-decode-execute

C prog

1.  Arithmetization: how to translate programs to equations

§  Non-deterministic circuit/constraint models make this easier

§  The process can be automated

2.  Data-dependent control flow can be provided naturally in either
a “CPU” front-end or an “ASIC” front-end

§  Likewise for RAM operations

Summary of key concepts and points

3.  There are trade-offs among expressiveness, amortization behavior,
and performance

§  None of the implementations have achieved genuine practicality

References
[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. Journal of the ACM, 45(3):501–555, May
1998. Prelim. version FOCS 1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, January 1998. Prelim. version FOCS 1992.

[Babai85] L. Babai. Trading group theory for randomness. In STOC, May 1985.

[BBFR15] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In IEEE Symposium on Security
and Privacy, May 2015.

[BCC86] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and Systems Sciences, 37(2):156–189, October 1988. Prelim.
versions: several papers in CRYPTO and FOCS 1986.

[BCCGLRT14] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and E.
Tromer. The hunting of the SNARK. Cryptology ePrint Archive, Report 2014/580.
2014.

[BCCT12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In ITCS,
January 2012.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for SNARKs and proof-carrying data. In STOC, June 2013.

[BCGGMTV14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Decentralized anonymous payments from Bitcoin. In IEEE Symposium on Security
and Privacy, May 2014.

[BCGT13] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the concrete-efficiency
threshold of probabilistically-checkable proofs. In STOC, June 2013.

[BCGTV13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
verifying program executions succinctly and in zero knowledge. In CRYPTO, August
2013.

[BCHKS96] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi, and M. Sudan. Linearity testing
in characteristic two. IEEE transactions on information theory, 42(6):1781–1795,
November 1996.

[BCIOP13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive
arguments via linear interactive proofs. In IACR TCC, March 2013.

[BCTV14a] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via
cycles of elliptic curves. In CRYPTO, August 2014.

[BCTV14b] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von Neumann architecture. In USENIX Security Symposium, August
2014.

[BEGKN91] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness
of memories. In FOCS, October 1991.

[BF11] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In Eurocrypt, May 2011, pages 149–168.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. In STOC, May 1991.

[BFR13] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In ACM CCS, November 2013.

[BFRSBW13] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying
computations with state. In SOSP, November 2013.

[BG02] B. Barak and O. Goldreich. Universal arguments and their applications. SIAM Journal
on Computing, 38(5):1661–1694, 2008. Prelim. version CCC 2002.

[BGHSV05] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Short PCPs
verifiable in polylogarithmic time. In Conference on Computational Complexity
(CCC), 2005.

[BGHSV06] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of
proximity, shorter PCPs and applications to coding. SIAM Journal on Computing,
36(4):889–974, December 2006.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically
checkable proofs and applications to approximations. In STOC, 1993.

[BGV11] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In CRYPTO, August 2011, pages 111–131.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and Systems Sciences, 47(3):549–595,
December 1993. Prelim. version STOC 1990.

[Braun12] B. Braun. Compiling computations to constraints for verified computation. UT Austin
Honors thesis HR-12-10. December 2012.

[BS08] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, May 2008.

[BZF11] M. Blanton, Y. Zhang, and K. Frikken. Secure and verifiable outsourcing of large-
scale biometric computations. In IEEE International Conference on Information
Privacy, Security, Risk and Trust (PASSAT), October 2011.

[CFHKKNPZ15] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno,
and S. Zahur. Geppetto: versatile verifiable computation. In IEEE Symposium on
Security and Privacy, May 2015.

[CL99] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002. Prelim.
versions OSDI 1999, OSDI 2000.

[CMT12] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with
streaming interactive proofs. In ITCS, January 2012.

[CRR11] R. Canetti, B. Riva, and G. Rothblum. Practical delegation of computation using
multiple servers. In ACM CCS, October 2011.

[CT10] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature
cards. In ICS, 2010.

[CTV15] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero knowledge. In
Eurocrypt, April 2015, pages 371–403.

[DFKP13] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio coin: building
zerocoin from a succinct pairing-based proof system. In Workshop on Language
Support for Privacy-enhancing Technologies, November 2013.

[Din07] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3), June
2007.

[FG12] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In ACM CCS, May 2012, pages 501–512.

[FGLSS91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, March
1996. Prelim. version FOCS 1991.

[FGP14] D. Fiore, R. Gennaro, and V. Pastro. Efficiently verifiable computation on encrypted
data. In ACM CCS, 2014.

[FL14] M. Fredrikson and B. Livshits. ZØ: an optimizing distributing zero-knowledge
compiler. In USENIX Security Symposium, August 2014.

[Freivalds77] R. Freivalds. Probabilistic machines can use less running time. In Proceedings of the
IFIP Congress, 1977, pages 839–842.

[GF95] A. M. Ghuloum and A. L. Fisher. Flattening and parallelizing irregular, recurrent
loop nests. In ACM PPoPP, July 1995.

[GGP10] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In CRYPTO, August 2010.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Eurocrypt, 2013.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive
proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, August 2015. Prelim.
version STOC 2008.

[GLR11] S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without rejec-
tion problem from designated verifier CS-proofs. Cryptology ePrint Archive, Report
2011/456. 2011.

[GM01] P. Golle and I. Mironov. Uncheatable distributed computations. In RSA Conference,
April 2001, pages 425–440.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Prelim. version
STOC 1985.

[Goldreich07] O. Goldreich. Probabilistic proof systems – a primer. Foundations and trends in
theoretical computer science, 3(1):1–91, 2007.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. New techniques for noninteractive zero-
knowledge. Journal of the ACM, 59(3):11:1–11:35, June 2012. Prelim. versions
CRYPTO 2006, Eurocrypt 2006.

[Groth10] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Asi-
acrypt, 2010.

[GW11] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, June 2011.

[HKD07] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical accountability
for distributed systems. In SOSP, October 2007, pages 175–188.

[IKO07] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short PCPs.
In Conference on Computational Complexity (CCC), 2007.

[Kilian92] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, May 1992.

[Knijnenburg98] P. M. W. Knijnenburg. Flattening: VLIW code generation for imperfectly nested
loops. In CPC98, June 1998.

[KNP05] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. Enhanced loop coalescing: a
compiler technique for transforming non-uniform iteration spaces. In ISHPC05/ALPS06,
September 2005.

[KP15] Y. T. Kalai and O. Paneth. Delegating RAM computations. Cryptology ePrint Archive,
Report 2015/957. 2015.

[KPPSST14] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Trian-
dopoulos. TRUESET: faster verifiable set computations. In USENIX Security Sympo-
sium, August 2014.

[KR09] Y. T. Kalai and R. Raz. Probabilistically checkable arguments. In CRYPTO, 2009.

[KRR14] Y. T. Kalai, R. Raz, and R. Rothblum. How to delegate computations: the power of
no-signaling proofs. In STOC, 2014.

[KSC09] G. O. Karame, M. Strasser, and S. Čapkun. Secure remote execution of sequential
computations. In International Conference on Information and Communications
Security, December 2009.

[KZMQCPPsS15] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, abhi shelat,
and E. Shi. How to use SNARKs in universally composable protocols. Cryptology
ePrint Archive, Report 2015/1093. 2015.

[Lipmaa11] H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In IACR TCC, 2011.

[Meir12] O. Meir. Combinatorial PCPs with short proofs. In Conference on Computational
Complexity (CCC), 2012.

[Merkle87] R. C. Merkle. A digital signature based on a conventional encryption function. In
CRYPTO, August 1987.

[Micali94] S. Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Prelim. version FOCS 1994.

[MR97] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, October 1998. Prelim. version STOC 1997.

[MSG07] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content integrity for untrusted
peer-to-peer content distribution networks. In Symposium on Networked Systems
Design and Implementation (NSDI), 2007.

[MWR99] F. Monrose, P. Wycko, and A. D. Rubin. Distributed execution with remote audit. In
Network and Distributed System Security Symposium (NDSS), February 1999.

[PGHR13] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy, May 2013.

[PMP11] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in modern computers.
Springer, 2011.

[Polychron87] C. D. Polychronopoulos. Loop coalescing: a compiler transformation for parallel
machines. In ICPP, August 1987.

[SBVBPW13] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving
the conflict between generality and plausibility in verified computation. In Eurosys,
April 2013.

[SBW11] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and unconditional
verification of remote computations. In Workshop on Hot Topics in Operating Systems
(HotOS), May 2011.

[Sion05] R. Sion. Query execution assurance for outsourced databases. In International Con-
ference on Very Large Databases (VLDB), August 2005, pages 601–612.

[SLSPDK05] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer:
verifying integrity and guaranteeing execution of code on legacy platforms. In SOSP,
October 2005.

[SMBW12] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument sys-
tems for outsourced computation practical (sometimes). In Network and Distributed
System Security Symposium (NDSS), February 2012.

[SSW10] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud computing: secure
outsourcing of data and arbitrary computations with lower latency. In TRUST, June
2010.

[SVPBBW12] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-
based verified computation a few steps closer to practicality. In USENIX Security
Symposium, August 2012.

[Thaler13] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, August
2013.

[TRMP12] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with
massively parallel interactive proofs. In USENIX HotCloud Workshop, June 2012.

[VSBW13] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive
verifiable computation. In IEEE Symposium on Security and Privacy, May 2013.

[WB15] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them:
from theoretical possibility to near practicality. Communications of the ACM, 58(2):74–
84, February 2015.

[WHGsW15] R. Wahby, M. Howald, S. Garg, abhi shelat, and M. Walfish. Verifiable ASICs.
Preprint. December 2015.

[WSRBW15] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM
and control flow in verifiable outsourced computation. In Network and Distributed
System Security Symposium (NDSS), February 2015.

[YCFVEEGH08] B. Ylvisaker, A. Carroll, S. Friedman, B. Van Essen, C. Ebeling, D. Grossman, and
S. Huack. Macah: a “C-level” language for programming kernels on coprocessor
accelerators. Technical report. University of Washington, Department of CSE, 2008.

