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Let’s clarify a few things from class 5: 

•  What are the constraints C’ versus the constraints C? 

•  How does the assignment z (satisfying or not) affect V’s checks? 

•  How and why do QAPs dramatically improve the picture? 



prover 
commit request 

commit response 

q1�v    q2�v     q3�v 

L(�) = <�,v> 

Attempt 3: Use long PCPs interactively (summary) 
[IKO07, SMBW12] 

Achieves simplicity, with good constants … 

… and prover’s work is quadratic; address that shortly 

ACCEPT/ 
REJECT 

z ⊗ z 

z 

v 

queries: q1, q2, q3, … 

verifier 

Hadamard 
encoding of  v 

...  

… but pre-processing is required (because |qi|=|v|)  



prover 

E(q1�v)    E(q2�v)   E(q3�v) 

L(�) = <�,v> 

Attempt 4: Use long PCPs non-interactively 
[BCIOP13] 

ACCEPT/ 
REJECT 

z ⊗ z 

z 

v 

E(q1), E(q2), E(q3)… 

verifier 

Hadamard 
encoding of  v 

...  

Query process now happens “in the exponent”  

… prover’s work still quadratic; addressing that soon 

… pre-processing still required (again because |qi|=|v|)  

preprocessing 
SNARG 
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(Thanks to Rafael Pass.) 
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PCP structure implicit in GGPR. Made explicit in [BCIOP13, SBVBBW13].  

[Groth10, Lipmaa12, GGPR12] 

Final attempt: apply linear query structure to GGPR’s QAPs 

prover 

L(�) { 
   return <�,v>; 
} 

z ⊗ z 

z 

v 
queries 

Addresses the issue of  quadratic costs. 



•  standard assumptions 
•  amortize over batch 
•  interactive 

•  non-falsifiable assumptions 
•  amortize indefinitely 
•  non-interactive, ZK, … 

plaintext 
queries 

linear PCP via QAPs 

queries in 
exponent 

“Pinocchio,” “libsnark” 
[PGHR13, BCTV14b] 

“Zaatar” 
[SBVBBW13] 

interactive 
argument 

[IKO07] 

SNARG, zk-SNARK with 
preprocessing 
[Groth10, BCCT12, GGPR12]  

preprocessing lowered to 
(high) constant 
[BCCT13, BCTV14a, CTV15] 

Summary of  published argument implementations 

[GGPR13] 

QAPs play the same role (but much, much better!) as “Q(z) plus the [z, z ⊗ z] 
encoding” (which is from [ALMSS92]; see [SMBW12, Apdx A] for a self-contained 
listing). This works because QAPs have a linear query structure, meaning that the 
query is a vector and the response is the dot product with a fixed vector). 



Onto the front-end….... 



This session: front-end techniques 

§  Key ideas: arithmetization, the convenience of  non-determinism, 
data-dependent control flow, the price of  generality, amortization 
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prover 

verifier 

back-end 
(prob. proof) 

x y 
 

… “CPU” 

main(){ 
 ... 
} 

“ASIC” 
structured 

arbitrary 

Recall the technical role of  the front-end: given computation f, produce constraints C, 
where C is degree-2 constraints over 𝔽 and variables (X, Y, Z) s.t. 
∀x,y: ∃ w s.t. y=f(x,w) ⟺ C(X=x,Y=y) is satisfiable 
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This session: front-end techniques 

§  Key ideas: arithmetization, the convenience of  non-determinism, 
data-dependent control flow, the price of  generality, amortization 

§  Focus on “non-deterministic ASICs”; provides intuition for the rest 

front-end 
(program to circuit/constraints translator) 

prover 

verifier 

back-end 
(prob. proof) 

x y 
 

… “CPU” 

main(){ 
 ... 
} 

“ASIC” 
structured 
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(1)  Arithmetization: from programs to constraints 

(2)  Enhancing expressiveness: data-dependent control flow 

(3)  Costs and comparisons 

Rest of  this session 



We will walk through the process of transforming a program into
equivalent constraints (arithmetization):

• How program structures translate.

• How the translation is automated by a C compiler.

• How the translation targets the format required by the back-end.

A lot of this is folklore (not many references, but see Braun’s thesis
[Braun12] and the appendices of Ginger [SVPBBW12]).

We will work over the field Fp (the integers mod a prime, p). Let’s
begin with a warmup . . .

Assignment allocates a fresh constraint variable (circuit wire):

a = 4;

a = a + 3;
=⇒



Boolean functions turn into arithmetic:

// assume x1 and x2 are 0-1 valued

y = x1 AND x2; =⇒
y = x1 OR x2; =⇒

EXERCISE: Fill in the equivalent constraints for the functions below:

y = NOT x1; =⇒
y = x1 NAND x2; =⇒
y = x1 NOR x2; =⇒
y = x1 XOR x2; =⇒



Equality checks are efficient:

// x1 and x2 need not be Boolean

z3 = (z1 != z2) ? 1 : 0; =⇒

Observe: the constraints exploit “non-determinism” . . . even though the
computation is deterministic.

EXERCISE: Fill in the equivalent constraints for the function below:

y = (x1 == x2) ? 1 : 0; =⇒



Conditionals require constraints (or gates) for each branch:

if (x1)

y = x2;

else

y = x3;

=⇒

EXERCISE: Fill in the equivalent constraints for the excerpt below:
if (z1 == 3)

z2 = 10;

else if (z1 == 5)

z2 = 20;

else

z2 = 30;

=⇒

EXERCISE: Fill in the equivalent constraints for the excerpt below:
// assume z1, z2 are already defined

if (z3 == 9)

z1 = z1 + 6;

else

z2 = z2 + 10;

=⇒



Loops are unrolled:

i=0;

for (j=0; j<10; j++) {

i++;

}

=⇒





Z = 0,
Z0 = Z + 1,
Z1 = Z0 + 1,

...
Z9 = Z8 + 1





Loop bounds must be static (for now).



EXERCISE (primitive load): (a) Write a program in pseudocode that takes two
inputs: an array of some fixed size (which you can represent as a vector of
variables) and an index in the array. Return the value at the specified index in
the array. (b) Translate your program into constraints. (c) What’s the most
efficient set (smallest number) of constraints that you can produce for this
program?

EXERCISE (Challenge!): Your solution to the previous exercise probably had
O(m) constraints, where m is the size of the input array. Can you lower the
number of constraints to O(log m)? (This will also require changing the input
specification.)



Negative numbers require care. (Fp has no notion of “less than zero”.)

What about order comparisons (such as x1 < x2)?

if (x1 < x2)

y = 3;

else

y = 4;

=⇒





M{C<},
M(Y − 3) = 0,
(1−M){C>=},
(1−M)(Y − 4) = 0





C< =





B0(1− B0) = 0,
B1(2− B1) = 0,
. . .





Cost: O(w), where w is bit width of variables.



EXERCISE: Write down constraints for <= and >.

EXERCISE: Write down constraints for z3 = z2 | z1, where | is bitwise or.

EXERCISE (Challenge!): So far, we have presumed that the original
computation was working over the integers; we then mapped integer
operations into Fp, and from there to constraints. Extend this model to rational
numbers: let the program work (in principle) over Q, identify a suitable finite
field for the constraints, and describe how to translate operations to
constraints.
Hint: Show that there is a choice of p for which a computation over Q/p (the quotient

field of Fp) is isomorphic to a computation over Q. How will you handle the order

comparisons (<, etc.)?



The foregoing process is automated. A compiler for (a subset of) C:

• Transforms the input program to single assignment

• Uses “pseudoconstraints” for some of the assignments

• Outputs constraints and annotations (hints for the prover)

By tracking the sizes of intermediate values, the compiler:

• Infers lower bound on prime p.
I Example: for matrix multiplication, compiler is told that inputs are

signed N bits. Compiler can infer that p must be at least m · 22N .

• Produces only necessary bitwise constraints.

For more about the mechanics of compilation, see Braun’s thesis [Braun12]; a
summary is in Pantry [BFRSBW13; §2, §7]. See also Ginger [SVPBBW12]
and Pinocchio [PGHR13].



The compiler must obey the constraint format required by the back-end:

• Degree-2, and possibly also:

• Quadratic form, meaning pA · pB = pC, where each p is a degree-1
polynomial. This is needed for QAP-based back-ends [GGPR13].

EXERCISE: Assuming C consists of degree-2 constraints, describe a
(straightforward) reduction from M{C} to a set of degree-2 constraints. What
is the cost of the reduction, in terms of extra variables and constraints
introduced?

EXERCISE: Consider the constraint {3 · Z1Z2 + 2 · Z3Z4 + Z5 − Z6 = 0}.
Replace this with three constraints in quadratic form.

EXERCISE: What is the cost, in terms of the number of extra variables and
constraints, of transforming a set of degree-2 constraints C to a set C’ in
quadratic form? What is the worst case? Do “usual” computations experience
the worst case?



The compiler must obey the constraint format required by the back-end:

• Degree-2, and possibly also:

• Quadratic form, meaning pA · pB = pC, where each p is a degree-1
polynomial. This is needed for QAP-based back-ends [GGPR13].

(“Quadratic Form” = “R1CS”)

Question: what are the R1CS constraints for matrix multiplication?



Digression: What is Freivalds algorithm for matrix multiplication?



(1)  Arithmetization: from programs to constraints 

(2)  Enhancing expressiveness: data-dependent control flow 

(3)  Costs and comparisons 



What happens when loops are nested?

i=0;

for (j=0; j<10; j++) {

i++;

for (k=0; k<2; k++) {

i=i*2;

}

}

=⇒





Z = 0,
Z0 = Z +1, // j == 0

Z1 = Z0 · 2, // k == 0

Z2 = Z1 · 2, // k == 1

Z3 = Z2+1, // j == 1

Z4 = Z3 · 2, // k == 0

Z5 = Z4 · 2, // k == 1

· · ·





Inner loop unrolls into every iteration of outer loop.

What if the loop bounds were data-dependent?



What happens when loops are nested?

i=0;

for (j=0; j<10; j++) {

i++;

for (k=0; k<2; k++) {

i=i*2;

}

}

=⇒





Z = 0,
Z0 = Z +1, // j == 0

Z1 = Z0 · 2, // k == 0

Z2 = Z1 · 2, // k == 1

Z3 = Z2+1, // j == 1

Z4 = Z3 · 2, // k == 0
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· · ·





Inner loop unrolls into every iteration of outer loop.

What if the loop bounds were data-dependent?



Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

1. Read (inchar,length) pair.
2. Emit inchar, length times.

1

2



Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do { /* bound=OUTLENGTH */

output[j++] = inchar;

length--;

} while (length > 0);

}

At one extreme, a single character’s run length could be OUTLENGTH.



Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) { /* bound=OUTLENGTH */

inchar = input[i++];

length = input[i++];

do { /* bound=OUTLENGTH */

output[j++] = inchar;

length--;

} while (length > 0);

}

At the other extreme, every character’s run length could be 1,
and the outer loop would iterate OUTLENGTH times.



Consider a decoder for a run-length encoded string with output size
OUTLENGTH. Compiling this requires bounding both loops.

“a5b2”⇒ “aaaaabb”

i = j = 0;

while (j < OUTLENGTH) { /* bound=OUTLENGTH */

inchar = input[i++];

length = input[i++];

do { /* bound=OUTLENGTH */

output[j++] = inchar;

length--;

} while (length > 0);

}

Thus, the compiler must unroll the inner loop to OUTLENGTH2 iterations,
even though the computation is linear in OUTLENGTH.



Observations:

1. Loop nests are equivalent to finite state machines (FSMs) . . .

2. . . . but FSMs are more efficiently represented in constraints

Idea: transform loop nests into FSMs.



i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}

How can a compiler perform such a transformation systematically?



Step 1: build a control flow graph:

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

• Identify vertices: straight line code segments.
• Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2
length > 0

length <= 0



Step 1: build a control flow graph:
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2 transitions to 1 when length <= 0.
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length <= 0
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Step 1: build a control flow graph:
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} while (length > 0);

}

• Identify vertices: straight line code segments.
• Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
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Step 2: from the control flow graph

, output the finite state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}

1

2
length > 0

length <= 0



Step 2: from the control flow graph, output the finite state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}

1
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Step 2: from the control flow graph, output the finite state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];

length = input[i++];

do {

output[j++] = inchar;

length--;

} while (length > 0);

}

i = j = 0;

state = 1;

while (j < OUTLENGTH) {

if (state == 1) {

inchar = input[i++];

length = input[i++];

state = 2;

}

if (state == 2) {

output[j++] = inchar;

length--;

if (length <= 0) {

state = 1;

}

}

}



The technique generalizes to break, continue, arbitrary nesting,
sequential loops, etc.

The whole thing works by source-to-source translation: from a program
with tested loops to one in FSM form, and from there into constraints.

The technique is detailed in Buffet [WSRBW15]; it is inspired by, and
extends, loop flattening from the parallel compilers literature [GF95, KNP05,

YCFVEEGH08, Knijnenburg98, Polychron87].

Caveats:

• Programmer must tell compiler # of steps to unroll the FSM.

• No “program memory”⇒ no function pointers.



EXERCISE: Transform the code below to a FSM. Assume that a bound is
known on the total number of iterations that your FSM will take.

// assume k is initialized earlier

// assume x is user-supplied input

while (j < MAX1) {

k = k + 1;

for (i = 0; i < x; i++) {

if (i + j == k) {

break;

}

j = j + 1;

}

j = j + 2;

}



CPU state: 
pc, regs, … 

A more general solution to data-dependent loop bounds 
[BCTV14b, BCGTV13] 

…

fetch-decode-
execute 0  
 

CPU state: 
pc, regs, … 

fetch-decode-
execute T  
 

CPU state: 
pc, regs, … 

fetch-decode-
execute 1  
 

Great programmability: handles all of  C (but still requires bounded 
execution, because programmer selects # of  CPU steps.) 

preview 

The state variable in the FSM is like a coarse program counter … 
... what if  the constraints modeled a program counter, registers, etc.?      



An important question, when considering expressiveness, 
is how one represents RAM computations inside the 
circuit or constraint formalism. There are multiple 
approaches to this problem; time permitting, we may cover 
this topic. 

For now, note that [BCTV14b] has an innovative solution, 
based on permutation networks, and assuming the “CPU 
approach”. Buffet [WSRBW15] borrows this solution and 
adapts it to the “ASIC approach”. 

A self-contained, short description of  [BCTV14b]’s solution is 
in section 2.3 of  [WSRBW15]. 



(1)  Arithmetization: from programs to constraints 

(2)  Enhancing expressiveness: data-dependent control flow 

(3)  Costs and comparisons 



Costs arise from the front-end, the back-end, and their interaction 

Goals: 

§  Understand concrete costs 

§  Understand the different amortization regimes 

§  Understand current trade-offs 

Plan:    

§  Compare front-ends, by holding back-end constant 

§  Compare back-ends on two different circuits 

§  Examine various metrics (mostly running times) 

§  Examine the amortization regimes 



Front-end comparison 

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized 
implementation of  Pinocchio/GGPR [PGHR13, GGPR13]. 

Front-ends: implementations or re-implementations of  

§  Zaatar (ASIC) [SBVBPW13] 

§  BCTV (CPU) [BCTV14b] 

§  Buffet (ASIC) [WSRHBW15] 
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Evaluation platform: cluster at Texas Advanced Computing Center (TACC) 

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB of  RAM. 

Front-end comparison 

Back-end: libsnark, which is BCTV’s [BCTV14b] optimized 
implementation of  Pinocchio/GGPR [PGHR13, GGPR13]. 

Front-ends: implementations or re-implementations of  

§  Zaatar (ASIC) [SBVBPW13] 

§  BCTV (CPU) [BCTV14b] 

§  Buffet (ASIC) [WSRHBW15] 



(1)  What are the verifier’s costs? 

(2)  What are the prover’s costs? 

(3)  How do the front-ends compare to each other? 

(4)  Are the constants good or bad? 

Proof  length  288 bytes 

V per-instance  6 ms + (|x| + |y|)･3 µs 

V pre-processing  |C|･180 µs 

P per-instance  |C|･60 µs +|C|log |C|･0.9µs 

P’s memory requirements  O(|C|log|C|)   

 

 
(|C|: circuit size) 



Extrapolated prover execution time, normalized to Buffet 

How does the prover’s cost vary with the choice of  front-end? 



Extrapolated prover execution time, normalized to native execution 

All of  the front-ends have terrible concrete performance 



approach ASIC CPU ASIC 

m × m 
mat. mult 

215 7 215 

merge sort 
m elements 

256 32 512 

KMP  
str len: m 
substr len: k 

m=320, 
k=32 

m=160, 
k=16 

m=2900, 
k=256 

Zaatar BCTV Buffet 

The data reflect a “gate budget” of  ≈107 gates.  

Pre-processing costs 10-30 minutes; proving costs 8-13 minutes 

The maximum input size is far too small to be called practical 



Back-end comparison 

§  Data are from our re-implementations and match or exceed 
published results. 

§  All experiments are run on the same machines (2.7Ghz, 32GB 
RAM). Average 3 runs (experimental variation is minor). 
§  For a few systems, we extrapolate from detailed microbenchmarks 

§  Benchmarks: 128×128 matrix multiplication and clustering 
algorithm 



1.  What is the per-instance verification cost? 

2.  What are the cross-over points? 

3.  What is the server’s overhead versus native execution? 

# instances 

CPU time 

computation costs 

verification costs 

cross-over  
point 
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Verification cost sometimes beats (unoptimized) 
native execution.   
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The prover’s costs are rather high. 



Amortization comparison (of  built systems) 

Systems [CMT12, VSBW13, Thaler13] derived from [GKR08] require little or no 
amortization (but have some expressivity limitations) 

Of  the schemes that handle arbitrary circuits (that is, those based on 
arguments), preprocessing costs amortize differently. Ordered best to worst: 

1.  Bootstrapped GGPR-based SNARKs [BCTV14a, CTV15] 

§  Constant preprocessing; amortize over all computations (but 
concrete costs to prover are extremely high). 

2.  BCTV [BCTV14b]: “CPU” front-end + non-interactive GGPR back-end 

§  Amortize over all future computations of  the same length 

3. Pinocchio [PGHR13]: “ASIC” front-end + non-interactive GGPR back-end 

§  Amortize over all future uses of  a given computation 

4. Zaatar [SBVBPW13]: “ASIC” front-end + interactive GGPR/IKO back-end 

§  Amortize over a batch of  instances of  a given computation 

 



Summary of  concrete performance 

§  Front-end: generality brings a concrete price (but better in theory) 

§  Verifier’s “variable costs”: genuinely inexpensive 

§  Verifier’s “pre-processing”: depends on setting 

§  Prover’s computational costs: mostly disastrous 

§  Memory: creates scaling limit for verifier and prover 

Performance is plausibly acceptable in certain settings … 

§  It must be “regular” (to avoid setup costs), or there must be many 
identical instances (to amortize setup costs) 

§  The given computation needs to be small 

… But none of  the systems is at true practicality 



Summary of  front-ends 

“ASIC”  

circuit is unrolled CPU execution 

 

§  Verbose (costly) 

§  Good amortization 

§  Great programmability 

§  Concise 

§  Amortization worse 

§  Programmability not bad 

“CPU”  

 

each line translates to gates/constraints 

 
[SVPBBW12, SBVBPW13, VSBW13, PGHR13, 

BFRSBW13, BCGGMTV14, BBFR14, FL14, 
KPPSST14, WSRBW15, CFHKKNPZ15] 

[BCGTV13, BCTV14a, BCTV14b, CTV15] 

C prog MIPS 
.exe 

CPU state 

…

fetch-decode-execute   
 

C prog 



1.  Arithmetization: how to translate programs to equations 

§  Non-deterministic circuit/constraint models make this easier 

§  The process can be automated 

 

2.  Data-dependent control flow can be provided naturally in either 
a “CPU” front-end or an “ASIC” front-end 

§  Likewise for RAM operations 

Summary of  key concepts and points  

3.  There are trade-offs among expressiveness, amortization behavior, 
and performance 

§  None of  the implementations have achieved genuine practicality 
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