
Introduction and overview of
verifiable computation

Michael Walfish

Dept. of Computer Science, Courant Institute, NYU

Bar-Ilan Winter School on Verifiable Computation
Class 1

January 4, 2016

(≈ delegation of computation
 ≈ succinct arguments
 ≈ execution integrity)

“f ”, x

y, short proof
 verifier

(V)
 prover

(P)

without executing f,
check that: “y = f(x)”

Classic and fundamental problem

§  Cloud computing (consider large distributed jobs)

§  Information retrieval (consider a query against a remote database)

§  Hardware supply chain (consider potentially adversarial chips)

§  Generalizes to verifying assertions

§  Many other applications

“f ”, x

y, short proof
 verifier

(V)
 prover

(P)

without executing f,
check that: “y = f(x)”

Classic and fundamental problem
§  Many applications (cloud computing, information retrieval, untrusted

hardware supply chain, etc.). Generalizes to verifying assertions.

Many variants of the setup

§  Proof delivered over rounds of interaction

§  More general claim: “there exists a w such that y = f(x,w)”

§  ... and furthermore P “knows” w

§  ... and furthermore P can keep w private

§  Different assumptions (unconditional vs. standard vs. funky)

§  V cannot access all of its input

“f ”, x

y, short proof
 verifier

(V)
 prover

(P)

Classic and fundamental problem

§  Many applications (cloud computing, information retrieval, untrusted
hardware supply chain, etc.). Generalizes to verifying assertions.

Many variants of the setup
§  Commonality: V gets assurance that P performed a task as directed,

without redoing P’s work and without access to P’s resources or inputs.

Note: program correctness is complementary
§  Program correctness establishes that f is consistent with a specification. In

our context, f is a (possibly buggy) given and is the directive for P.

without executing f,
check that: “y = f(x)”

ACCEPT

“claim: f(x) = y” verifier
(randomized)

prover

Many of the variants are addressable in theory, with
probabilistic proof protocols GMR85

BCC86
BFLS91

FGLSS91
Kilian92
ALMSS92

AS92
Micali94

BG02
GOS06
IKO07

GKR08
KR09

GGP10
Groth10

GLR11
Lipmaa11

BCCT12
GGPR13
BCCT13

KRR14
…

Citations here and throughout connect to the references
at the end of the slides.

“claim: f(x) = y’ ”

REJECT

Are probabilistic proof protocols practical?

Many of the variants are addressable in theory, with
probabilistic proof protocols

verifier
(randomized)

prover

GMR85
BCC86

BFLS91
FGLSS91
Kilian92
ALMSS92

AS92
Micali94

BG02
GOS06
IKO07

GKR08
KR09

GGP10
Groth10

GLR11
Lipmaa11

BCCT12
GGPR13
BCCT13

KRR14
…

Good news:

Equivocal news:

§  Running code; cost reductions of 1020 vs. theory

§  Compilers from C to verifiable computations

§  Concretely efficient verifiers

§  Small computations, extreme expense, etc.

§  Useful only for special-purpose applications

SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13

Thaler13
BCGTV13

BFRSBW13
BFR13

DFKP13
BCTV14a
BCTV14b

 BCGGMTV14
FL14

KPPSST14
FGP14

WSRHBW15
BBFR15

CFHKKNPZ15
CTV15

KZMQCPPsS15
WHGsW15

So, lots of work left … and high payoff:

this is a good opportunity for you!

Below is a list of published implementations of
probabilistic proofs. See [WB15] for a partial survey.

(1)  Landscape, history, and synopsis of the area

(2) Syllabus (for the 10 classes on verifiable computation)

(3) Technical preliminaries

Rest of this session

A. Make usage assumptions

§  replication [MR97, CL99, CRR11]

§  attestation [PMP11, SLSPDK05], trusted hardware [CT10, SSW10]

§  auditing [MWR99, HKD07]

C. Strive for generality

Landscape: broad approaches to verifiable computation

B. Restrict the class of computations
 [Freivalds77, GM01, Sion05, MSG07, KSC09, BGV11, BF11, BZF11, FG12, …]

A brief history of verifiable computation via probabilistic proofs

•  Interactive Proofs [GMR85], Arthur-Merlin [Babai85]

•  PCPs [BFLS91]

“In this setup, a single reliable PC can monitor the operation of a herd of
supercomputers working with possibly extremely powerful but unreliable
software and untested hardware.”

−Babai, Fortnow, Levin, and Szegedy, Checking
Computations in Polylogarithmic Time, 1991

A brief history of verifiable computation via probabilistic proofs

•  Interactive Proofs [GMR85], Arthur-Merlin [Babai85]

•  PCPs [BFLS91] (“a single reliable PC can monitor…”)

•  PCP theorem [ALMSS92, AS92]

•  Efficient arguments [Kilian92]

•  CS proofs [Micali94]

“we aim at obtaining certificates ensuring that no error has occurred in a given
execution of a given algorithm on a given input...This question is quite crucial
whenever we are confident in the design of a given algorithm ... but less so in
the physical computer that runs it.”

−Micali, Computationally Sound Proofs, 2000

A brief history of verifiable computation via probabilistic proofs

•  Interactive Proofs [GMR85], Arthur-Merlin [Babai85]

•  PCPs [BFLS91] (“a single reliable PC can monitor…”)

•  PCP theorem [ALMSS92, AS92]

•  Efficient arguments [Kilian92]

•  CS proofs [Micali94] (“certified computation”)

•  Interactive proof with polynomial prover [GKR08]

•  Efficient argument with simple PCP [IKO07]

•  Non-interactive verifiable computation [GGP10] (coins “VC”)

•  Challenges to the view that “this is theory-only” (2011−) [WB15]

•  Theoretical innovation ongoing: SNARG/SNARK [GW11, Groth10,

Lipmaa12, GGPR12, BCCT13, BCCGLRT14], 2-msg delegation [KRR14], ...

back-end
(probabilistic proof protocol)

front-end
(program translator)

Synopsis of the research area

arithmetic circuit

x y, proof

main(){
 ...
}

C program

prover

verifier

back-end
(probabilistic proof protocol)

x y, proof

prover

verifier

interactive proof

interactive argument

non-interactive argument
(CS proof, SNARG, SNARK)

•  what circuits does it handle?

•  what assumptions are needed?

•  what are its properties?

•  what is the number of messages?

•  what are the costs?

•  what costs can be amortized?

•  what are the mechanics?

back-end
(probabilistic proof protocol)

front-end
(program translator)

arithmetic circuit

x y, proof

main(){
 ...
}

C program

prover

verifier

front-end
(program translator)

arithmetic circuit

main(){
 ...
}

C program

circuits with repeated structure

circuits without repeated structure

circuits w/ non-deterministic input

“universal” circuits

•  how expressive is it?

•  what is programming like?

•  how does translation work?

•  what are the costs of different
program structures?

•  how can programs refer to
external state?

“ASIC”

“CPU”

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest

A key trade-off is performance versus expressiveness

Proof-carrying data &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

interactive
proofs (IPs)

args.

applicable computations

concrete
costs “regular”

straight
line pure stateful

general
loops

function
pointers

lowest CMT++
Thaler13

CMT
CMT12

Allspice
VSBW13

Pepper
SMBW12

Ginger
SVPBBW12

Zaatar
SBVBPW13

Pinocchio
PGHR13

Geppetto
CFH..PZ15

 Pantry
 BFRSBW13

Buffet
WSRBW15

highest

A key trade-off is performance versus expressiveness

Proof-carrying data &
bootstrapping
BCTV14a, CTV15

BCTV
BCTV14b
BCGTV
BCGTV13

ASIC

CPU

[Your
work
here!]

The area is interdisciplinary:

•  We care about interesting theory and concrete costs

•  The area blends crypto, complexity theory, PL, systems

§  Unconditionally secure delegation for all of PSPACE (YTK $100)

§  2-msg delegation for 𝒩𝒫 with standard assumptions (YTK)

§  Publicly-verif. 2-msg delegation for 𝒫 with std. assumptions (YTK)

§  Zero knowledge with standard assumptions that is inexpensive in
practice

§  More efficient reductions from programs to circuits

§  More efficient encodings of execution traces

§  Probabilistic proof protocols that do not require circuits

§  Avoiding preprocessing/amortization in a way that is inexpensive
in practice

§  Special-purpose algorithms for outsourcing pieces of computations,
which integrate with circuit verification

Lots of open problems and questions

(1)  Landscape, history, and synopsis of the area

(2) Syllabus (for the 10 classes on verifiable computation)

(3) Technical preliminaries

Our goal: motivate and equip you to do research in this area

How:

•  Teach you some of the building blocks

•  Expose you to the key results

•  Provide you with pointers into the literature

§  Class 2: Statistically sound delegation (YTK)
§  History

§  Sum-check protocol, low-degree extensions

§  Unconditionally secure delegation for low depth circuits

§  Classes 3 and 4: Computationally sound delegation (YTK)
§  History of arguments and CS proofs

§  PCP + hash paradigm, Fiat-Shamir heuristic

§  The space of assumptions

§  2-msg delegation for computations in 𝒫 (std. assumptions) …

§  … and for “long input” computations

§  Class 5: Interactive arguments with preprocessing (MW)
§  Linear PCPs

§  Interactive arguments via linear PCPs

§  The role of QAPs

§  Class 6: Non-interactive arguments with preprocessing (ET)
§  SNARGs and (zk-)SNARKs based on linear PCPs

§  Details of QAPs

§  Refinements of QAPs

§  Class 7: Program representations (MW)
§  Arithmetization: from programs to circuits (“ASIC approach”)

§  Data-dependent control flow

§  Expressiveness versus amortization versus performance

§  Classes 8 and 9: TBA (ET). Possible topics include:

§  Application of “ASIC approach”: Zerocash [BCGGMTV14]

§  “CPU approach” to circuits: TinyRAM [BCGTV13, BCTV14b]

§  Permutation networks for RAM computations
 [BCGT13, BCGTV13, BCTV14b]

§  Bootstrapping SNARKs [BCCT13] by composing QAPs,
TinyRAM, and elliptic curve cycles [BCTV14a, CTV15]

§  SNARKs without preprocessing, using short PCPs
 [BCCT12, BCCGLRT14]

§  Progress in ongoing work implementing short PCPs

§  Class 10: Additional applications and summary (MW)
§  External state

§  MapReduce, face-matching, regression analysis, etc.

§  Implementations of IPs (time permitting)

§  Wrap-up

Classes at a glance (numbers in blue refer to class number)

back-end
(probabilistic proof protocol)

front-end
(program translator)

main(){
 ...
}

…

“ASIC”

“CPU” interactive
args.

interactive
proofs (IPs)

(QAPs)

2

bootstrapping (recursive use of the machinery)

non-interactive
args.

7, 10

8, 9

n
o
p
r
e
p
r
o
c

8, 9

3, 4

10

8, 9

5

(QAPs)

6

*

* * *

*

*

*

* Indicates that the mechanism has been implemented

(1)  Landscape, history, and synopsis of the area

(2) Syllabus (for the 10 classes on verifiable computation)

(3) Technical preliminaries

How are probabilistic proofs defined?

 Completeness:

 Soundness:

 Efficiency:

Variants: computational soundness, non-deterministic
languages, proof of knowledge, zero knowledge.

How are probabilistic proofs defined?

 Completeness:

 Soundness:

 Efficiency:

Variants: computational soundness, non-deterministic
languages, proof of knowledge, zero knowledge.

There are many definitions and variants; below is the general form. For details, consult a text ([AB09, Goldreich07,
Micali94, BG02] are all extremely lucid). A probabilistic proof for a language L is an interacting verifier VL (which
is PPT) and prover PL (whose power varies depending on the definition). Let (V, P)(a) denote the interaction
between V and P on instance a. If (V, P)(a) = 1, V is said to “accept” the interaction. The interaction must meet:

If a ∊ L, Pr{(VL, PL)(a) = 1} = 1.

The probability is taken over V’s random choices.

If a ∉ L, then ∀ P’, Pr{(VL, P’)(a) = 1} < 𝜀, for some fixed, constant 𝜀.

The probability is again over V’s random choices.

The honest P (that is, PL) should have running time that is polynomial (and ideally linear or quasilinear)
in the time to compute or decide L (as noted earlier, the assumed power of a dishonest P depends on the
kind of probabilistic proof). V’s running time is ideally constant or logarithmic in the time to compute or
decide L; same with the communication complexity.

What language should we use for “correct program execution”?

§  Boolean circuit satisfiability

§  Arithmetic circuit satisfiability

§  Non-deterministic (Boolean, arith.) circuit satisfiability

“Satisfiability” enters because there are implicit constraints.
Sometimes it is easier to work with constraints explicitly.

What language should we use for “correct program execution”?

§  Boolean circuit satisfiability

§  Arithmetic circuit satisfiability

§  Non-deterministic (Boolean, arith.) circuit satisfiability

“Satisfiability” enters because there are implicit constraints.
Sometimes it is easier to work with constraints explicitly.

We use this term to refer to the language of triples (C, x, y) where a Boolean circuit C, if given input x,
produces output y. This is slightly non-standard, but it matches the problem setup in delegation.

Similar to prior one, but now: the circuit is over a large finite field, the wires are interpreted as field
elements, and the gates are interpreted as field operations (add, multiply).

Now we imagine that the circuit takes some unconstrained input (label it W), and this language is all
triples (C, x, y) for which there exists some W=w such that C(x,w) = y.

A convenient language: arithmetic constraint satisfiability

§  System of equations in finite field 𝔽.

§  A computation f is equivalent to constraints C if:

f(X) {
 Y = X + 1;
 return Y;
}

increment-by-one

A convenient language: arithmetic constraint satisfiability

§  System of equations in finite field 𝔽.

§  A computation f is equivalent to constraints C if:

f(X) {
 Y = X + 1;
 return Y;
}

0 = Z − X,
0 = Z – Y + 1

increment-by-one

 C is constraints over variables (X, Y, Z) and field 𝔽 s.t.
 (det case) ∀x,y: y=f(x) ⟺ C(X=x,Y=y) is satisfiable
 (non-det. case)∀x,y: (∃ w s.t. y=f(x,w)) ⟺ C(X=x,Y=y) is satisfiable
 Terminology: constraints C are said to be an arithmetization of the computation f.

[equivalent]

QuadConstraint𝔽

§  Degree-2 constraints over finite field 𝔽

§  What do the constraints/gates below represent?

 Z

X1

X2

Y

0

Y
=

(X
1−

X
2)

Z

(1
−

Y
)(

X
1−

X
2)

=
0

§  This is an exciting inter-disciplinary area:
§  Addresses a fundamental problem, using deep theory

§  There is still lots of work to be done …

§  …. but the potential is large (goes far beyond the cloud!)

§  Central technical notions:
§  probabilistic proofs, circuits (constraints), program translators

§  Many tradeoffs, properties, axes, facets
§  Ideally, we will help you understand them

§  Ideally, you will help improve them!

Summary

Acknowledgment: my collaborators in
this research area

Andrew J. Blumberg (UT), Benjamin Braun (now at
Stanford), Ariel Feldman (UChicago), Siddharth Garg
(NYU), Max Howald (Cooper Union, NYU), Richard
McPherson, Nikhil Panpalia (now at Amazon), Bryan
Parno (MSR), Zuocheng Ren, Srinath Setty (now at
MSR), abhi shelat (UVA), Justin Thaler (Yahoo
Research), Victor Vu (now at Sandia), and Riad Wahby
(now at Stanford).

(http://www.pepper-project.org)

References
[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
the hardness of approximation problems. Journal of the ACM, 45(3):501–555, May
1998. Prelim. version FOCS 1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, January 1998. Prelim. version FOCS 1992.

[Babai85] L. Babai. Trading group theory for randomness. In STOC, May 1985.

[BBFR15] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In IEEE Symposium on Security
and Privacy, May 2015.

[BCC86] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and Systems Sciences, 37(2):156–189, October 1988. Prelim.
versions: several papers in CRYPTO and FOCS 1986.

[BCCGLRT14] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and E.
Tromer. The hunting of the SNARK. Cryptology ePrint Archive, Report 2014/580.
2014.

[BCCT12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In ITCS,
January 2012.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for SNARKs and proof-carrying data. In STOC, June 2013.

[BCGGMTV14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Decentralized anonymous payments from Bitcoin. In IEEE Symposium on Security
and Privacy, May 2014.

[BCGT13] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the concrete-efficiency
threshold of probabilistically-checkable proofs. In STOC, June 2013.

[BCGTV13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
verifying program executions succinctly and in zero knowledge. In CRYPTO, August
2013.

[BCIOP13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive
arguments via linear interactive proofs. In IACR TCC, March 2013.

[BCTV14a] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via
cycles of elliptic curves. In CRYPTO, August 2014.

[BCTV14b] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von Neumann architecture. In USENIX Security Symposium, August
2014.

[BEGKN91] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness
of memories. In FOCS, October 1991.

[BF11] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In Eurocrypt, May 2011, pages 149–168.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. In STOC, May 1991.

[BFR13] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In ACM CCS, November 2013.

[BFRSBW13] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying
computations with state. In SOSP, November 2013.

[BG02] B. Barak and O. Goldreich. Universal arguments and their applications. SIAM Journal
on Computing, 38(5):1661–1694, 2008. Prelim. version CCC 2002.

[BGHSV05] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Short PCPs
verifiable in polylogarithmic time. In Conference on Computational Complexity
(CCC), 2005.

[BGHSV06] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of
proximity, shorter PCPs and applications to coding. SIAM Journal on Computing,
36(4):889–974, December 2006.

[BGV11] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In CRYPTO, August 2011, pages 111–131.

[Braun12] B. Braun. Compiling computations to constraints for verified computation. UT Austin
Honors thesis HR-12-10. December 2012.

[BS08] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, May 2008.

[BZF11] M. Blanton, Y. Zhang, and K. Frikken. Secure and verifiable outsourcing of large-
scale biometric computations. In IEEE International Conference on Information
Privacy, Security, Risk and Trust (PASSAT), October 2011.

[CFHKKNPZ15] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno,
and S. Zahur. Geppetto: versatile verifiable computation. In IEEE Symposium on
Security and Privacy, May 2015.

[CL99] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002. Prelim.
versions OSDI 1999, OSDI 2000.

[CMT12] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with
streaming interactive proofs. In ITCS, January 2012.

[CRR11] R. Canetti, B. Riva, and G. Rothblum. Practical delegation of computation using
multiple servers. In ACM CCS, October 2011.

[CT10] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature
cards. In ICS, 2010.

[CTV15] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero knowledge. In
Eurocrypt, April 2015, pages 371–403.

[DFKP13] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio coin: building
zerocoin from a succinct pairing-based proof system. In Workshop on Language
Support for Privacy-enhancing Technologies, November 2013.

[Din07] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3), June
2007.

[FG12] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In ACM CCS, May 2012, pages 501–512.

[FGLSS91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM, 43(2):268–292, March
1996. Prelim. version FOCS 1991.

[FGP14] D. Fiore, R. Gennaro, and V. Pastro. Efficiently verifiable computation on encrypted
data. In ACM CCS, 2014.

[FL14] M. Fredrikson and B. Livshits. ZØ: an optimizing distributing zero-knowledge
compiler. In USENIX Security Symposium, August 2014.

[Freivalds77] R. Freivalds. Probabilistic machines can use less running time. In Proceedings of the
IFIP Congress, 1977, pages 839–842.

[GF95] A. M. Ghuloum and A. L. Fisher. Flattening and parallelizing irregular, recurrent
loop nests. In ACM PPoPP, July 1995.

[GGP10] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In CRYPTO, August 2010.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Eurocrypt, 2013.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive
proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, August 2015. Prelim.
version STOC 2008.

[GLR11] S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without rejec-
tion problem from designated verifier CS-proofs. Cryptology ePrint Archive, Report
2011/456. 2011.

[GM01] P. Golle and I. Mironov. Uncheatable distributed computations. In RSA Conference,
April 2001, pages 425–440.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Prelim. version
STOC 1985.

[Goldreich07] O. Goldreich. Probabilistic proof systems – a primer. Foundations and trends in
theoretical computer science, 3(1):1–91, 2007.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. New techniques for noninteractive zero-
knowledge. Journal of the ACM, 59(3):11:1–11:35, June 2012. Prelim. versions
CRYPTO 2006, Eurocrypt 2006.

[Groth10] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Asi-
acrypt, 2010.

[GW11] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, June 2011.

[HKD07] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical accountability
for distributed systems. In SOSP, October 2007, pages 175–188.

[IKO07] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short PCPs.
In Conference on Computational Complexity (CCC), 2007.

[Kilian92] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, May 1992.

[Knijnenburg98] P. M. W. Knijnenburg. Flattening: VLIW code generation for imperfectly nested
loops. In CPC98, June 1998.

[KNP05] A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. Enhanced loop coalescing: a
compiler technique for transforming non-uniform iteration spaces. In ISHPC05/ALPS06,
September 2005.

[KP15] Y. T. Kalai and O. Paneth. Delegating RAM computations. Cryptology ePrint Archive,
Report 2015/957. 2015.

[KPPSST14] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Trian-
dopoulos. TRUESET: faster verifiable set computations. In USENIX Security Sympo-
sium, August 2014.

[KR09] Y. T. Kalai and R. Raz. Probabilistically checkable arguments. In CRYPTO, 2009.

[KRR14] Y. T. Kalai, R. Raz, and R. Rothblum. How to delegate computations: the power of
no-signaling proofs. In STOC, 2014.

[KSC09] G. O. Karame, M. Strasser, and S. Čapkun. Secure remote execution of sequential
computations. In International Conference on Information and Communications
Security, December 2009.

[KZMQCPPsS15] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, abhi shelat,
and E. Shi. How to use SNARKs in universally composable protocols. Cryptology
ePrint Archive, Report 2015/1093. 2015.

[Lipmaa11] H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In IACR TCC, 2011.

[Meir12] O. Meir. Combinatorial PCPs with short proofs. In Conference on Computational
Complexity (CCC), 2012.

[Merkle87] R. C. Merkle. A digital signature based on a conventional encryption function. In
CRYPTO, August 1987.

[Micali94] S. Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Prelim. version FOCS 1994.

[MR97] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, October 1998. Prelim. version STOC 1997.

[MSG07] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content integrity for untrusted
peer-to-peer content distribution networks. In Symposium on Networked Systems
Design and Implementation (NSDI), 2007.

[MWR99] F. Monrose, P. Wycko, and A. D. Rubin. Distributed execution with remote audit. In
Network and Distributed System Security Symposium (NDSS), February 1999.

[PGHR13] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy, May 2013.

[PMP11] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in modern computers.
Springer, 2011.

[Polychron87] C. D. Polychronopoulos. Loop coalescing: a compiler transformation for parallel
machines. In ICPP, August 1987.

[SBVBPW13] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving
the conflict between generality and plausibility in verified computation. In Eurosys,
April 2013.

[SBW11] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and unconditional
verification of remote computations. In Workshop on Hot Topics in Operating Systems
(HotOS), May 2011.

[Sion05] R. Sion. Query execution assurance for outsourced databases. In International Con-
ference on Very Large Databases (VLDB), August 2005, pages 601–612.

[SLSPDK05] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer:
verifying integrity and guaranteeing execution of code on legacy platforms. In SOSP,
October 2005.

[SMBW12] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument sys-
tems for outsourced computation practical (sometimes). In Network and Distributed
System Security Symposium (NDSS), February 2012.

[SSW10] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud computing: secure
outsourcing of data and arbitrary computations with lower latency. In TRUST, June
2010.

[SVPBBW12] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-
based verified computation a few steps closer to practicality. In USENIX Security
Symposium, August 2012.

[Thaler13] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, August
2013.

[TRMP12] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with
massively parallel interactive proofs. In USENIX HotCloud Workshop, June 2012.

[VSBW13] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive
verifiable computation. In IEEE Symposium on Security and Privacy, May 2013.

[WB15] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them:
from theoretical possibility to near practicality. Communications of the ACM, 58(2):74–
84, February 2015.

[WHGsW15] R. Wahby, M. Howald, S. Garg, abhi shelat, and M. Walfish. Verifiable ASICs.
Preprint. December 2015.

[WSRBW15] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM
and control flow in verifiable outsourced computation. In Network and Distributed
System Security Symposium (NDSS), February 2015.

[YCFVEEGH08] B. Ylvisaker, A. Carroll, S. Friedman, B. Van Essen, C. Ebeling, D. Grossman, and
S. Huack. Macah: a “C-level” language for programming kernels on coprocessor
accelerators. Technical report. University of Washington, Department of CSE, 2008.

