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“f ”, x 

y,  short proof  
 verifier 

(V) 
 prover 

(P) 

without executing f, 
check that: “y = f(x)” 

Classic and fundamental problem 

§  Cloud computing (consider large distributed jobs) 

§  Information retrieval (consider a query against a remote database) 

§  Hardware supply chain (consider potentially adversarial chips) 

§  Generalizes to verifying assertions 

§  Many other applications 
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 verifier 
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 prover 
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without executing f, 
check that: “y = f(x)” 

Classic and fundamental problem 
§  Many applications (cloud computing, information retrieval, untrusted 

hardware supply chain, etc.). Generalizes to verifying assertions. 

Many variants of  the setup 

§  Proof  delivered over rounds of  interaction 

§  More general claim: “there exists a w such that y = f(x,w)” 

§  ... and furthermore P “knows” w 

§  ... and furthermore P can keep w private 

§  Different assumptions (unconditional vs. standard vs. funky) 

§  V cannot access all of  its input 



“f ”, x 

y,  short proof  
 verifier 

(V) 
 prover 

(P) 

Classic and fundamental problem   

§  Many applications (cloud computing, information retrieval, untrusted 
hardware supply chain, etc.). Generalizes to verifying assertions. 

Many variants of  the setup 
§  Commonality: V gets assurance that P performed a task as directed, 

without redoing P’s work and without access to P’s resources or inputs. 

Note: program correctness is complementary 
§  Program correctness establishes that f  is consistent with a specification. In 

our context, f  is a (possibly buggy) given and is the directive for P. 

without executing f, 
check that: “y = f(x)” 



ACCEPT 

“claim: f(x) = y” verifier 
(randomized) 

prover 

Many of  the variants are addressable in theory, with 
probabilistic proof  protocols GMR85 

BCC86 
BFLS91 

FGLSS91 
Kilian92 
ALMSS92 

AS92 
Micali94 

BG02 
GOS06 
IKO07 

GKR08 
KR09 

GGP10 
Groth10 

GLR11 
Lipmaa11 

BCCT12 
GGPR13 
BCCT13 

KRR14 
… 

Citations here and throughout connect to the references 
at the end of  the slides. 



“claim: f(x) = y’ ” 

REJECT 

Are probabilistic proof  protocols practical? 

Many of  the variants are addressable in theory, with 
probabilistic proof  protocols 

verifier 
(randomized) 

prover 

GMR85 
BCC86 

BFLS91 
FGLSS91 
Kilian92 
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Micali94 
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Good news: 

Equivocal news: 

§  Running code; cost reductions of  1020 vs. theory 

§  Compilers from C to verifiable computations 

§  Concretely efficient verifiers 

§  Small computations, extreme expense, etc. 

§  Useful only for special-purpose applications 

SBW11 
CMT12 

SMBW12 
TRMP12 

SVPBBW12 
SBVBPW13 

VSBW13 
PGHR13 

Thaler13 
BCGTV13 

BFRSBW13 
BFR13 

DFKP13 
BCTV14a 
BCTV14b 

   BCGGMTV14 
FL14 

KPPSST14 
FGP14 

WSRHBW15 
BBFR15   

CFHKKNPZ15 
CTV15 

KZMQCPPsS15 
WHGsW15 

So, lots of  work left … and high payoff: 

this is a good opportunity for you! 

Below is a list of  published implementations of  
probabilistic proofs. See [WB15] for a partial survey. 



(1)  Landscape, history, and synopsis of  the area 

(2)  Syllabus (for the 10 classes on verifiable computation)  

(3)  Technical preliminaries 

Rest of  this session 



A.  Make usage assumptions 

§  replication [MR97, CL99, CRR11] 

§  attestation [PMP11, SLSPDK05], trusted hardware [CT10, SSW10] 

§  auditing [MWR99, HKD07] 

C.  Strive for generality 

Landscape: broad approaches to verifiable computation 

B.  Restrict the class of  computations 
        [Freivalds77, GM01, Sion05, MSG07, KSC09, BGV11, BF11, BZF11, FG12, …]   



A brief  history of  verifiable computation via probabilistic proofs 

•  Interactive Proofs [GMR85], Arthur-Merlin [Babai85]   

•  PCPs [BFLS91] 

“In this setup, a single reliable PC can monitor the operation of  a herd of  
supercomputers working with possibly extremely powerful but unreliable 
software and untested hardware.” 

−Babai, Fortnow, Levin, and Szegedy, Checking 
Computations in Polylogarithmic Time, 1991 



A brief  history of  verifiable computation via probabilistic proofs 

•  Interactive Proofs [GMR85], Arthur-Merlin [Babai85]   

•  PCPs [BFLS91] (“a single reliable PC can monitor…”) 

•  PCP theorem [ALMSS92, AS92] 

•  Efficient arguments [Kilian92] 

•  CS proofs [Micali94] 

“we aim at obtaining certificates ensuring that no error has occurred in a given 
execution of  a given algorithm on a given input...This question is quite crucial 
whenever we are confident in the design of  a given algorithm ... but less so in 
the physical computer that runs it.” 

−Micali, Computationally Sound Proofs, 2000 



A brief  history of  verifiable computation via probabilistic proofs 

•  Interactive Proofs [GMR85], Arthur-Merlin [Babai85]   

•  PCPs [BFLS91] (“a single reliable PC can monitor…”) 

•  PCP theorem [ALMSS92, AS92] 

•  Efficient arguments [Kilian92] 

•  CS proofs [Micali94] (“certified computation”) 

•  Interactive proof  with polynomial prover [GKR08] 

•  Efficient argument with simple PCP [IKO07] 

•  Non-interactive verifiable computation [GGP10] (coins “VC”) 

•  Challenges to the view that “this is theory-only” (2011−) [WB15] 

•  Theoretical innovation ongoing: SNARG/SNARK [GW11, Groth10, 

Lipmaa12, GGPR12, BCCT13, BCCGLRT14], 2-msg delegation [KRR14], ...  



back-end 
(probabilistic proof  protocol) 

front-end 
(program translator) 

Synopsis of  the research area 

arithmetic circuit 
 

x y, proof    

main(){ 
 ... 
} 

C program 
 

prover 

verifier 



back-end 
(probabilistic proof  protocol) 

x y, proof    

prover 

verifier 

interactive proof  

interactive argument  

non-interactive argument 
(CS proof, SNARG, SNARK) 

•  what circuits does it handle? 

•  what assumptions are needed? 

•  what are its properties? 

•  what is the number of  messages? 

•  what are the costs?  

•  what costs can be amortized? 

•  what are the mechanics? 



back-end 
(probabilistic proof  protocol) 

front-end 
(program translator) 

arithmetic circuit 
 

x y, proof    

main(){ 
 ... 
} 

C program 
 

prover 

verifier 



front-end 
(program translator) 

arithmetic circuit 
 

main(){ 
 ... 
} 

C program 
 

circuits with repeated structure 

circuits without repeated structure 

circuits w/ non-deterministic input 

“universal” circuits 

 

•  how expressive is it? 

•  what is programming like? 

•  how does translation work? 

•  what are the costs of  different 
program structures? 

•  how can programs refer to 
external state? 

“ASIC” 

“CPU” 



applicable computations 

concrete 
costs “regular” 

straight 
line pure stateful 

general 
loops 

function 
pointers 

lowest CMT++ 
Thaler13 

CMT 
CMT12 
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Zaatar 
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PGHR13 

Geppetto 
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Buffet 
WSRBW15 

highest 

A key trade-off  is performance versus expressiveness 

Proof-carrying data & 
bootstrapping 
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BCGTV 
BCGTV13 

interactive 
proofs (IPs) 

args. 
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here! ] 



The area is interdisciplinary: 

•  We care about interesting theory and concrete costs 

•  The area blends crypto, complexity theory, PL, systems 



§  Unconditionally secure delegation for all of  PSPACE (YTK $100) 

§  2-msg delegation for 𝒩𝒫 with standard assumptions (YTK) 

§  Publicly-verif. 2-msg delegation for 𝒫 with std. assumptions (YTK) 

§  Zero knowledge with standard assumptions that is inexpensive in 
practice 

§  More efficient reductions from programs to circuits 

§  More efficient encodings of  execution traces 

§  Probabilistic proof  protocols that do not require circuits 

§  Avoiding preprocessing/amortization in a way that is inexpensive 
in practice 

§  Special-purpose algorithms for outsourcing pieces of  computations, 
which integrate with circuit verification 

Lots of  open problems and questions 



(1)  Landscape, history, and synopsis of  the area 

(2)  Syllabus (for the 10 classes on verifiable computation)  

(3)  Technical preliminaries 



Our goal: motivate and equip you to do research in this area 

How: 

•  Teach you some of  the building blocks 

•  Expose you to the key results 

•  Provide you with pointers into the literature 



§  Class 2: Statistically sound delegation (YTK) 
§  History 

§  Sum-check protocol, low-degree extensions 

§  Unconditionally secure delegation for low depth circuits 

§  Classes 3 and 4: Computationally sound delegation (YTK) 
§  History of  arguments and CS proofs 

§  PCP + hash paradigm, Fiat-Shamir heuristic 

§  The space of  assumptions 

§  2-msg delegation for computations in 𝒫 (std. assumptions) … 

§  … and for “long input” computations 



§  Class 5: Interactive arguments with preprocessing (MW) 
§  Linear PCPs  

§  Interactive arguments via linear PCPs 

§  The role of  QAPs   

§  Class 6: Non-interactive arguments with preprocessing (ET) 
§  SNARGs and (zk-)SNARKs based on linear PCPs  

§  Details of  QAPs 

§  Refinements of  QAPs  



§  Class 7: Program representations (MW) 
§  Arithmetization: from programs to circuits (“ASIC approach”) 

§  Data-dependent control flow 

§  Expressiveness versus amortization versus performance 



§  Classes 8 and 9: TBA (ET). Possible topics include: 

§  Application of  “ASIC approach”: Zerocash [BCGGMTV14] 

§  “CPU approach” to circuits: TinyRAM [BCGTV13, BCTV14b] 

§  Permutation networks for RAM computations 
       [BCGT13, BCGTV13, BCTV14b] 

§  Bootstrapping SNARKs [BCCT13] by composing QAPs, 
TinyRAM, and elliptic curve cycles [BCTV14a, CTV15] 

§  SNARKs without preprocessing, using short PCPs 
       [BCCT12, BCCGLRT14] 

§  Progress in ongoing work implementing short PCPs 



§  Class 10: Additional applications and summary (MW) 
§  External state 

§  MapReduce, face-matching, regression analysis, etc. 

§  Implementations of  IPs (time permitting) 

§  Wrap-up 



Classes at a glance (numbers in blue refer to class number) 

back-end 
(probabilistic proof  protocol) 

front-end 
(program translator) 

main(){ 
 ... 
} 

…

“ASIC” 

“CPU” interactive 
args. 

interactive 
proofs (IPs) 

(QAPs) 

2 

bootstrapping (recursive use of  the machinery) 

non-interactive 
args. 
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r
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10 
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*

* * *

*

*

*

* Indicates that the mechanism has been implemented   



(1)  Landscape, history, and synopsis of  the area 

(2)  Syllabus (for the 10 classes on verifiable computation)  

(3)  Technical preliminaries 



How are probabilistic proofs defined? 

 Completeness: 

 Soundness: 

 Efficiency: 

Variants: computational soundness, non-deterministic 
languages, proof  of  knowledge, zero knowledge.   



How are probabilistic proofs defined? 

 Completeness: 

 Soundness: 

 Efficiency: 

Variants: computational soundness, non-deterministic 
languages, proof  of  knowledge, zero knowledge.   

There are many definitions and variants; below is the general form. For details, consult a text ([AB09, Goldreich07, 
Micali94, BG02] are all extremely lucid). A probabilistic proof  for a language L is an interacting verifier VL (which 
is PPT) and prover PL (whose power varies depending on the definition). Let (V, P)(a) denote the interaction 
between V and P on instance a. If  (V, P)(a) = 1, V is said to “accept” the interaction. The interaction must meet: 

If  a ∊ L, Pr{(VL, PL)(a) = 1} = 1. 

The probability is taken over V’s random choices. 

If  a ∉ L, then ∀ P’, Pr{(VL, P’)(a) = 1} < 𝜀, for some fixed, constant 𝜀.  

The probability is again over V’s random choices.  

The honest P (that is, PL) should have running time that is polynomial (and ideally linear or quasilinear) 
in the time to compute or decide L (as noted earlier, the assumed power of  a dishonest P depends on the 
kind of  probabilistic proof). V’s running time is ideally constant or logarithmic in the time to compute or 
decide L; same with the communication complexity. 



What language should we use for “correct program execution”? 

§  Boolean circuit satisfiability 

§  Arithmetic circuit satisfiability 

§  Non-deterministic (Boolean, arith.) circuit satisfiability 

“Satisfiability” enters because there are implicit constraints. 
Sometimes it is easier to work with constraints explicitly. 

 



What language should we use for “correct program execution”? 

§  Boolean circuit satisfiability 

§  Arithmetic circuit satisfiability 

§  Non-deterministic (Boolean, arith.) circuit satisfiability 

“Satisfiability” enters because there are implicit constraints. 
Sometimes it is easier to work with constraints explicitly. 

 

We use this term to refer to the language of  triples (C, x, y) where a Boolean circuit C, if  given input x, 
produces output y. This is slightly non-standard, but it matches the problem setup in delegation. 

Similar to prior one, but now: the circuit is over a large finite field, the wires are interpreted as field 
elements, and the gates are interpreted as field operations (add, multiply). 

Now we imagine that the circuit takes some unconstrained input (label it W), and this language is all 
triples (C, x, y) for which there exists some W=w such that C(x,w) = y. 



A convenient language: arithmetic constraint satisfiability 

§  System of  equations in finite field 𝔽.  

§  A computation f  is equivalent to constraints C if: 

 

f(X) { 
   Y = X + 1; 
   return Y; 
} 

increment-by-one 



A convenient language: arithmetic constraint satisfiability 

§  System of  equations in finite field 𝔽.  

§  A computation f  is equivalent to constraints C if: 

 

f(X) { 
   Y = X + 1; 
   return Y; 
} 

0 = Z − X, 
0 = Z – Y + 1 

increment-by-one 

 C is constraints over variables (X, Y, Z) and field 𝔽 s.t.  
         (det case) ∀x,y:  y=f(x) ⟺ C(X=x,Y=y) is satisfiable 
         (non-det. case)∀x,y: (∃ w s.t. y=f(x,w)) ⟺ C(X=x,Y=y) is satisfiable 
         Terminology: constraints C are said to be an arithmetization of  the computation f.  

[equivalent] 



QuadConstraint𝔽 

§  Degree-2 constraints over finite field 𝔽  

§  What do the constraints/gates below represent? 

 Z 

X1 

X2 

Y 

0 

Y
=

(X
1−

X
2)

Z
 

(1
−

Y
)(

X
1−

X
2)

=
0 



§  This is an exciting inter-disciplinary area: 
§  Addresses a fundamental problem, using deep theory 

§  There is still lots of  work to be done … 

§  …. but the potential is large (goes far beyond the cloud!) 

§  Central technical notions: 
§  probabilistic proofs, circuits (constraints), program translators 

§  Many tradeoffs, properties, axes, facets 
§  Ideally, we will help you understand them 

§  Ideally, you will help improve them! 

Summary 
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