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Verifier V Prover P

computation Φ,
input x

output y
+ short proof π

In general: Proof π convinces V that y = Φ(x).

For zero knowledge: π convinces V that P knows witness w
s.t. y = Φ(x ,w), without revealing w .

[Bab85, GMR85, BCC86, BGGHKMR90, BFLS91, FGLSS91, ALMSS92, AS92,
Kil92, LFKN92, Sha92, Mic94, CD98, BG02, BS05, GOS06, BGHSV06,
IKO07, GKR08, IKOS08, KR09, GGP10, Groth10, GLR11, Lip11, BCCT12,
BCIOP13, GGPR13, PST13, Tha13, KRR14, BCCGP16, BCS16, Groth16,
RRR16, BBC-GGI19, . . . ]
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Costs and desiderata

• P time

• V time

• communication cost / proof size

• cryptographic assumptions

• trusted setup? per-Φ or universal?

• interactive or non-interactive?

• zero knowledge?

• model of computation / “expressiveness”

Bottom line: this is a huge tradeoff space!
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Proof systems pipeline

On input x , P convinces V that y = Φ(x ,w)
for a witness w that P knows

Φ: witness
checking

computation

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +
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Proof systems pipeline

On input x , P convinces V that y = Φ(x ,w)
for a witness w that P knows

Φ: witness
checking

computation

intermed.
repr. C

proof
machinery

front-end

C is satisfied ⇐⇒ y = Φ(x ,w)
back-end

valid proof ⇐⇒ C is satisfied

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +



Underlying machinery

Linear PCPs [IKO07,BBCGI19] and QAPs [GGPR13]
Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13],
Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], . . .

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14]
[CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

MPC-in-the-head [IKOS08]
ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17]

Generalized Σ-protocols [Sch89,CP92,Oka92,Cra97]
[BCCGP16], Bulletproofs [BBBPWM18]

IOPs [KR08,BCS16,RRR16] + Arguments [Kil92,Mic94]
Aurora [BCRSVW19], STARK [BBHR19]

Polynomial delegation [KZG10,PST13]
Sonic [MBKM19]
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Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

(DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

(unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19]

(algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

(DH)
(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

(DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

(unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19]

(algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

(DH)
(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

(DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

(unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19]

(algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

(DH)
(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

(DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19]

(algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

(DH)
(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

(DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19]

(algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

(DH)
(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19]

(algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH)

(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19]

(algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH)

(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19] (algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH)

(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19] (algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH)

(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



Setup and cryptographic assumptions
No trusted setup

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM)

ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]

(CRHF/ROM)

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup
[BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b],
(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

(KoE)

Sonic [MBKM19] (algebraic group model)

Per-Φ trusted setup
Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH)

(setup amortizes over a batch)

Pinocchio [PGHR13], libSNARK [BCTV14a],
ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], . . .

(KoE)

(setup amortizes forever)



2 4 6 8
log2 M , number of leaves in Merkle tree

0.1

1

10

100

103

104

105
pr

oo
f

si
ze

,
ki

B
(l

ow
er

is
b

et
te

r)

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

10−1

100

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax Libra Aurora Bulletproofs ZKB++ Ligero libSTARK libSNARK

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

10−1

100

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax Libra Aurora Bulletproofs ZKB++ Ligero libSTARK libSNARK
Numbers are from Hyrax [WTsTW18], except Libra, Aurora, and libSNARK, which are from Libra [XZZPS19]



2 4 6 8
log2 M , number of leaves in Merkle tree

1

10

100

103

104
pr

ov
er

ti
m

e,
se

co
nd

s
(l

ow
er

is
b

et
te

r)

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

10−1

100

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax Libra Aurora Bulletproofs ZKB++ Ligero libSTARK libSNARK

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

10−1

100

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax Libra Aurora Bulletproofs ZKB++ Ligero libSTARK libSNARK
Numbers are from Hyrax [WTsTW18], except Libra, Aurora, and libSNARK, which are from Libra [XZZPS19]



2 4 6 8
log2 M , number of leaves in Merkle tree

0.01

0.1

1

10

100

103
ve

ri
fie

r
ti

m
e,

se
co

nd
s

(l
ow

er
is

b
et

te
r)

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

10−1

100

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax Libra Aurora Bulletproofs ZKB++ Ligero libSTARK libSNARK

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

10−1

100

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax Libra Aurora Bulletproofs ZKB++ Ligero libSTARK libSNARK
Numbers are from Hyrax [WTsTW18], except Libra, Aurora, and libSNARK, which are from Libra [XZZPS19]



Proof system construction

On input x , P convinces V that y = Φ(x ,w)
for a witness w that P knows

Φ: witness
checking

computation

intermed.
repr. C

proof
machinery

front-end

C is satisfied ⇐⇒ y = Φ(x ,w)
back-end

valid proof ⇐⇒ C is satisfied

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +



Representing Φ for execution on the back-end

“CPU”: run Φ on unrolled FSM
fetch-decode-
execute step 1

CPU state:
pc, regs, . . .

fetch-decode-
execute step 2

CPU state:
pc, regs, . . .

· · ·
fetch-decode-
execute step T

CPU state:
pc, regs, . . .

[BCGTV13,BCTV14a,BCTV14b,CTV15,ZGKPP18,BBHR19]

“FPGA”: translate Φ directly to AC or constraints
if (i >= 5)

i = i + 1;
else

i = i * 2;
=⇒

i1 = i0 + 1;
i2 = i0 * 2;
i3 = (i0 >= 5) ?

i1 : i2;

// assume i0 is k+1 bits
i4 = i0 - 5;
// prover supplies i4_0, ..., i4_k
assert (i4 - i4_0 - 2 * i4_1 - ... - 2ˆk * i4_k == 0);
assert (i4_0 * (1 - i4_0) == 0);
...
assert (i4_{k-1} * (1 - i4_{k-1}) == 0);
assert (i4_k == 0);

[. . . , SVPBBW12, BFRSBW13, SBVBPW13, PGHR13, VSBW13, BBFR15,
CFHKKNPZ15, KZMQCPPsS15, WSRHBW15, BCCGP16, BBBPWM18, KPS18,
BCRSVW19, MBKM19, Circom, Bellman, . . . ]

Z[GKR08]-derived systems need a low depth circuit:
[CMT12, WHGsW16, WJBsTWW17, WTsTW18, XZZPS19]
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Performance vs. expressiveness

costs
special
purpose pure stateful

general
control flow

[Tha13]

lower vSQL [ZGKPP17]
Giraffe [WJBsTWW17]

Allspice [VSBW13]

Bellman
gadgetlib [BCTV14a]

LegoSNARK
[CFQ19]

c0c0 [KZMQCPPsS15]

Zaatar [SBVBPW13]

Pinocchio [PGHR13]

Circom
Ginger [SVPBBW12]

Pepper [SMBW12]

xJsnark [KPS18]

Geppetto
[CFHKKNPZ15]

ADSNARK
[BBFR15]

Pantry [BFRSBW13]

vRAM [ZGKPP18]

Buffet
[WSRHBW15]

STARK [BBHR19]

(vn)TinyRAM
[BCTV14a]

[BCGTV13]

higher
[BCTV14b]

[CTV15]

bet
te

r



Front-end comparison
Extrapolated P execution time, normalized to Buffet

m=215 k=512 n=256, `=2900
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• xJsnark [KPS18] improves upon Buffet by up to ≈3×
• vRAM [ZGKPP18] (builds on and refines [Tha13] back-end) is
≈22× faster than Buffet for matmult, comparable otherwise



Reality check
Extrapolated P execution time, normalized to native execution
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Reality check 2: reachable problem sizes

For ≈107 gates, P needs ≈16–32 GiB of RAM.

Limiting computations to these sizes yields:

Pantry BCTV14a Buffet

matrix multiplication
m ×m

215 7 215

merge sort
k elements

8 32 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n= 4,
`= 8

n= 16,
`= 160

n= 256,
`= 2900

Z vRAM [ZGKPP18] increases reachable sizes by ≈10×



DIZK [WZCPS18]: distributing P ’s workload

Idea: run P as a distributed computation

Challenge: need to compute gigantic FFT!
(among others)

Z[Sze11]: converts size-n FFT to two
√
n-sized

batches of
√
n-sized tasks
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DIZK: 100× larger instances

19 20 21 22 23 24 25 26 27 28 29 30 31
log2 instance size

libsnark PGHR
libsnark Groth

1
4
8

16
32
64

128
256

# 
ex

ec
ut

or
s

Largest supported instance size

Figure 4: Largest instance size supported by
libsnark’s serial implementation of PGHR’s
protocol [55] and Groth’s protocol [42] vs. our distributed
system.

16 18 20 22 24 26 28 30
log2 instance size

4
6
8

10
12
14

lo
g

2
 ti

m
e 

(s
ec

)

Setup

16 18 20 22 24 26 28 30
log2 instance size

4
6
8

10
12
14

lo
g

2
 ti

m
e 

(s
ec

)

Prover

# executors

1 4 8 16 32 64 128 256

1 4 8 16 32 64 128 256
# executors

3
4
5
6
7
8
9

10
11
12
13
14

lo
g

2
 ti

m
e 

(s
ec

)

1 4 8 16 32 64 128 256
# executors

3
4
5
6
7
8
9

10
11
12
13
14
15

lo
g

2
 ti

m
e 

(s
ec

)

log2 instance size

215

223

216

224

217

225

218

226

219

227

220

228

221

229

222

230

Figure 5: Setup and prover running times for different
combinations of instance size and number of executors.

from our experiments, reported in Fig. 7, shows that our
implementation behaves as desired: for a given number of
executors, running times increase close to linearly in the
instance size; also, for a given instance size, running times
decrease close to linearly in the number of executors.

10.3 Effectiveness of our techniques
We ran experiments (32 and 64 executors for all feasible
instances) comparing the performance of the setup and
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Figure 6: Running times of Lag and FFT over F for dif-
ferent combinations of instance size and number of ex-
ecutors.
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Figure 7: Running times of fixMSM,varMSM over
G1,G2 for combinations of instance size and number
of executors.

prover with two implementations: (1) the implementation
that is part of DIZK, which has optimizations described
in the design sections (§4, §5, §6); and (2) an implemen-
tation that does not employ these optimizations (e.g., uses
skewjoin instead of our solution, and so on). Our data
established that our techniques allow achieving instance
sizes that are 10 times larger, at a cost that is 2-4 times
faster in the setup and prover.

11 Evaluation of applications
We evaluated the performance of constraint and witness
generation for the applications described in §7.

Fig. 9 shows, for various instances of our applications,
the number of constraints and the performance of con-
straint and witness generation. In all cases, witness gen-
eration is markedly more expensive than constraint gen-
eration due to data shuffling. Either way, both costs are
insignificant when compared to the corresponding costs

686    27th USENIX Security Symposium USENIX Association

[WZCPS18, Fig. 4]



DIZK: 100× faster execution
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implementation behaves as desired: for a given number of
executors, running times increase close to linearly in the
instance size; also, for a given instance size, running times
decrease close to linearly in the number of executors.

10.3 Effectiveness of our techniques
We ran experiments (32 and 64 executors for all feasible
instances) comparing the performance of the setup and
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16 18 20 22 24 26 28 30 32 34
log2 instance size

-2
0
2
4
6
8

lo
g

2
 ti

m
e 

(s
ec

)

fixMSM in G1

16 18 20 22 24 26 28 30 32
log2 instance size

2
4
6
8

10
12
14

lo
g

2
 ti

m
e 

(s
ec

)

fixMSM in G2

16 18 20 22 24 26 28 30 32
log2 instance size

-1
1
3
5
7
9

11

lo
g

2
 ti

m
e 

(s
ec

)

varMSM in G1

16 18 20 22 24 26 28 30 32
log2 instance size

-1
1
3
5
7
9

11

lo
g

2
 ti

m
e 

(s
ec

)

varMSM in G2

# executors

1 4 8 16 32 64 128 256

Figure 7: Running times of fixMSM,varMSM over
G1,G2 for combinations of instance size and number
of executors.

prover with two implementations: (1) the implementation
that is part of DIZK, which has optimizations described
in the design sections (§4, §5, §6); and (2) an implemen-
tation that does not employ these optimizations (e.g., uses
skewjoin instead of our solution, and so on). Our data
established that our techniques allow achieving instance
sizes that are 10 times larger, at a cost that is 2-4 times
faster in the setup and prover.

11 Evaluation of applications
We evaluated the performance of constraint and witness
generation for the applications described in §7.

Fig. 9 shows, for various instances of our applications,
the number of constraints and the performance of con-
straint and witness generation. In all cases, witness gen-
eration is markedly more expensive than constraint gen-
eration due to data shuffling. Either way, both costs are
insignificant when compared to the corresponding costs
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Spice [SAGL18]: verifiable concurrent services (in ZK)

(e.g., a cloud-hosted wallet service.)

A programmer can express a VSM in a broad subset of
C (augmented with APIs for SetKV and transactions),
and compile it to executables of clients that generate
requests, servers that process those requests and gener-
ate proofs, and verifiers that check the correctness of
responses by verifying proofs. We build several realis-
tic applications with Spice: an inter-bank transaction ser-
vice [27], a cloud-hosted ledger [28], and a dark pool [63].
Our experimental evaluation shows that Spice’s VSMs
are 29–2,000× more CPU-efficient than the same VSMs
built with prior work. Furthermore, they achieve 18,000–
685,000× higher throughput than prior work by employ-
ing multiple CPUs. Concretely, Spice’s VSMs support
488–1167 transactions/second on a cluster of 16 machines,
each with 32 CPU cores and 256 GB of RAM.

Despite these advances, Spice has limitations. To
achieve high throughput, Spice proves state transitions in
batches, so one must wait for a batch to be verified be-
fore determining the correctness of any individual request,
which introduces latency (§3, §7.2). The CPU cost to pro-
duce proofs remains large (§7.1, §7.3) when compared to
an execution that does not produce proofs. Nevertheless,
Spice opens the door to VSMs that support a concurrent
model of computation and to many exciting applications.

2 Problem statement and background
Spice’s goal is to produce verifiable state machines
(VSMs). We begin by reviewing state machines, which
we use as an abstraction to represent a request-processing
service. A state machine is specified by a tuple (Ψ,S0),
where Ψ is a deterministic program that encodes state
transitions, and S0 is the initial state of the machine (e.g.,
a set of key-value pairs). The state machine maintains
its state with Scur, which is initialized to S0. When the
machine receives a request x, it executes Ψ with x and its
state Scur as inputs; this mutates the state of the machine
and produces a response y. More formally, the machine
executes a request x to produce a response y as follows:

(Si, y)← Ψ(Scur, x)

Scur ← Si

A state machine may execute a batch of requests con-
currently to achieve a higher throughput. In such a case,
the behavior of the state machine (i.e., the state after exe-
cuting a batch of requests, and the responses produced by
the machine) depends on the desired correctness condi-
tion for concurrent operations. In this paper we focus on
sequential consistency [52] as the correctness condition
for concurrent operations on single objects, and serializ-
ability for multi-object transactions [21, 62].

A verifiable state machine permits the verification of
state transitions without reexecution and without access
to the (plaintext) contents of requests, responses, and

clients

verifiers

requests

backing 
store

tests
accept/
reject

program

concurrent 
prover

trace

responses

FIGURE 1—Overview of verifiable state machines (see text).

the state of the machine (Scur). Specifically, a VSM is a
protocol involving a prover P , a set of clients that issue re-
quests, and one or more verifiers {V1, . . . ,Vℓ} that check
the correctness of the execution (clients can be verifiers).
We depict this protocol in Figure 1; it proceeds as follows.

1. P runs a state machine (Ψ,S0) that processes requests
concurrently and maintains its state on a persistent
storage service (e.g., a key-value store).

2. Clients issue a set of requests, x1, . . . , xm, concurrently
to P and get back responses, y1, . . . , ym.

3. Each verifier Vj receives an opaque trace from P and
runs a local check on the trace that outputs accept or
reject. Concretely, the trace contains a commitment1 to
the initial state of the machine, a commitment to the
final state after executing the batch of requests, and a
commitment and proof for each request-response pair.

An efficient VSM must satisfy the following properties.

• Correctness. If P is honest (i.e., P’s behavior is equiv-
alent to a correct execution of requests in a sequential
order) then P can make a Vj output true.

• Soundness. If P errs (e.g., it does not execute Ψ or vio-
lates semantics of storage), then Pr[Vj outputs true] ≤
ϵ, where ϵ is small (e.g., 1/2128).2

• Zero-knowledge. The trace does not reveal anything
to a verifier Vj beyond the correctness of P , the number
of requests executed by P , and the size of P’s state.

• Succinctness. The size of each entry in the trace should
be small, ideally a constant (e.g., a few hundred bytes).
The cost to a Vj to verify an entry is linear in the size
of the entry (e.g., a few milliseconds of CPU-time).

• Throughput. P should be able to execute (and gener-
ate proofs for) hundreds of requests/second.

VSMs are related to recent systems for proving the cor-
rect execution of stateful computations [8, 25, 30, 34, 38,
83]. However, in prior systems: (1) P lacks mechanisms

1 A commitment c to a value x is hiding and binding. Hiding means that
c does not reveal anything about x. Binding means that it is infeasible
to find a value x′ ̸= x which produces the same commitment.

2We discuss how to prevent P from equivocating (i.e., showing different
traces to different verifiers) or omitting requests in Section 9.
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Spice [SAGL18]: verifiable concurrent services (in ZK)

(e.g., a cloud-hosted wallet service.)

Idea: adapt primitives from memory checking
literature [BEGKN91,CDDGE03,AEKKMPR17]

read-set write-set

service’s state

Insert(k,v):
(k,v,0)

get(k)  v, 0

(k,v,0)
(k,v,0), 
(k,v,1)

read-set is a subset of write-set

get(k)  w, 0

(k,w,0)
(k,v,0), 
(k,w,1)

read-set is a not subset of write-set

(source: Srinath’s talk)



Spice [SAGL18]: verifiable concurrent services (in ZK)

(e.g., a cloud-hosted wallet service.)

Performance results:

get cost put cost

size of state (# key-value pairs) 1 103 106 1 103 106

Pantry 4.1K 44.9K 85.7K 8.2K 89.8K 171.5K
Geppetto 3 3.0K 3.0M 4 4.0K 4.0M
Pantry+Jubjub 2.1K 23.1K 44.1K 4.2K 46.2K 88.2K

Spice 1.5K 1.5K 1.5K 1.5K 1.5K 1.5K
Ψaudit 1250/m 561K/m 582M/m 561/m 561K/m 582M/m

FIGURE 7—Per-operation cost of get and put—in terms of number of algebraic constraints—for Spice and its baselines with
varying number of key-value pairs in P’s state. We also depict the costs for Spice’s Ψaudit; m denotes the number of storage operations
after which P runs Ψaudit to produce πaudit. Figure 6 depicts P’s and each Vj’s CPU-time as a function of the number of constraints.

0
300
600
900

1200
1500

get
(uniform)

put
(uniform)

get
(zipfian)

put
(zipfian)

th
ro

u
g

h
p

u
t 

(o
p

s/
se

c) 1 core
4 cores

16 cores

64 cores
256 cores

 512 cores

4 4 4 41
4

1
4

1
3

1
44
7

4
6

4
6

4
71
7

2

1
7

0

1
6

3

1
6

1

6
8

6

6
8

3

4
9

6

4
4

7

1
3

6
6

1
3

7
0

7
1

1

6
4

8

FIGURE 8—Benefits of Spice’s concurrent request execution. The workload is a stream of gets or puts and P’s state contains 1M
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get put

Pantry 0.078 0.039
Pantry+Jubjub 0.153 0.076
Geppetto 0.002 0.002

Spice (1-thread) 3.6 3.6
Spice (512-threads) 1366 1370

FIGURE 9—Throughput (ops/sec) for get and put in Spice and
its baselines. The size of the state is 1M key-value pairs.

uniform and Zipfian (exponent of 1.0). We measure the
number of storage operations performed (and proofs pro-
duced) by P per second. Figure 8 depicts our results.

We find that Spice’s prover achieves a near-linear
speedup with increasing number of cores. When keys
are chosen uniformly, P (with 512 cores) achieves 379×
higher throughput compared to a single-core execution
(for both get and put workloads). When the workload
is Zipfian, the speedup is 180× due to higher contention
(recall from Section 4.1 that P locks keys outside of the
constraint formalism to guarantee isolation). In absolute
terms, Spice’s prover executes 648–1,370 key-value store
operations/second on 512 CPU cores.

Compared to its baselines (Figure 9), Spice’s through-
put is 92× that of Pantry, 47× that of Pantry+Jubjub, and
1,800× that of Geppetto for puts. The gap widens when
Spice leverages 512 cores: Spice’ throughput is 35,100×
higher than Pantry, 18,000× higher than Pantry+Jubjub,
and 685,000× higher than Geppetto.

Latency. P needs additional resources to periodically
produce πaudit. Meanwhile, the time that P needs to gener-

ate πaudit dictates the latency of storage operations—since
a verifier Vj must check πaudit before establishing the cor-
rectness of prior storage operations (§3.2). We start by
measuring P’s time to run Ψaudit and produce πaudit.

Recall from Section 5.1 that the cost of generating
πaudit scales linearly with the size of P’s state and we
parallelize this using MapReduce (§5.1). We experiment
with P’s state containing 1M key-value pairs. We run a
MapReduce job on 1,024 CPU cores consisting of 1,024
mappers, where each mapper reads 1,024 key-value tu-
ples and produces a single set-digest (the details of the
MapReduce job are in Appendix A.2 [65]). We then
run 33 reducers (split over two levels containing 32 and
1 reducers) and a final aggregator. We find that the job
(including proof generation) takes 3.63 minutes. As a re-
sult, if P runs Ψaudit every k minutes the latency of any
key-value store operation is at most k + 3.63 minutes.

Amortized costs of storage operations. Suppose we set
k=10 minutes, which covers a batch of 800,000 storage
operations (recall that P executes 1,360 ops/sec under a
uniform distribution). The amortized cost of Ψaudit would
be 582 · 106/800, 000 ≈ 728 constraints, and the per-
operation storage cost (in terms of #constraints) would be
728 + 1500 ≈ 2228 constraints. This is 76× lower than
Pantry, 39× lower than Pantry+Jubjub, and 1790× lower
than Geppetto for put operations (1M key-value pairs in
P’s state). With larger k (larger latency), this gap widens.

Verifier’s costs. A verifier’s costs to check a proof of
correct execution for a Ψreq is 3 ms of CPU-time; the
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Firewall

e.g., a custom chip for network packet processing
whose manufacture we outsource to a third party

What if the chip’s manufacturer inserts a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.
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Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., Oakland16;
Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:
7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

7 So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Idea: outsource computations to untrusted chips
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Verifiable ASICs [WHGsW16,WJBsTWW17]: Curve25519
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Wishlist: back-ends
avoiding FFTs
Z major bottleneck in systems based on QAPs and IOPs;

the “quasilinear barrier”
memory-, communication-intensive, costly to distribute

better multilinear polynomial commitments
Z major bottleneck in systems based on IPs and MIPs;

sqrt-sized or expensive for V or trusted setup

MPC-in-the-head beyond the sqrt barrier
Z ZKB++ and Ligero are super fast with minimal

assumptions; can we get smaller proofs?

updateable SRS with updateable proofs
Z some steps in this direction:

[Lip19] https://ia.cr/2019/333
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Wishlist: front-ends

beyond the AC model
Z “natural” computations are ugly as ACs: bitwise ops,

comparisons; this is a major cost, e.g., in SHA-256
TinyRAM [BCGTV13,BCTV14a], vRAM [ZGKPP18], STARK
[BBHR19] point the way; can we go further?

compilers for everyone!
Z recent work hand tunes statements, relies on authors’

intuition and implicit knowledge
let’s systematize this knowledge, automate tuning

3 improved accessibility and real-world deployability
3 highly leveraged work for the research community:

simpler, higher quality evaluations, easier-to-interpret results
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