Practical proof systems: Implementations, applications, and next steps

Riad S. Wahby

Stanford

September 23rd, 2019

For zero knowledge: π convinces \mathcal{V} that \mathcal{P} knows witness w s.t. $y = \Phi(x, w)$, without revealing w.

For zero knowledge: π convinces \mathcal{V} that \mathcal{P} knows witness w s.t. $y = \Phi(x, w)$, without revealing w.

[Bab85, GMR85, BCC86, BGGHKMR90, BFLS91, FGLSS91, ALMSS92, AS92, Kil92, LFKN92, Sha92, Mic94, CD98, BG02, BS05, GOS06, BGHSV06, IKO07, GKR08, IKOS08, KR09, GGP10, Groth10, GLR11, Lip11, BCCT12, BCIOP13, GGPR13, PST13, Tha13, KRR14, BCCGP16, BCS16, Groth16, RRR16, BBC-GGI19, ...]

For zero knowledge: π convinces \mathcal{V} that \mathcal{P} knows witness w s.t. $y = \Phi(x, w)$, without revealing w.

[Bab85, GMR85, BCC86, BGGHKMR90, BFLS91, FGLSS91, ALMSS92, AS92, Kil92, LFKN92, Sha92, Mic94, CD98, BG02, BS05, GOS06, BGHSV06, IKO07, GKR08, IKOS08, KR09, GGP10, Groth10, GLR11, Lip11, BCCT12, BCIOP13, GGPR13, PST13, Tha13, KRR14, BCCGP16, BCS16, Groth16, RRR16. BBC-GGI19. ...]

BBFR15 CTV15 WSRHBW15 D-I FKP16 FFGKOP16 **GMO16 NT16** WHGsW16 AHIV17 WIBsTWW17 ZGKPP17a 7GKPP17b BBBPWM18 KPS18 SAGL18 WT_sTW18 W7CPS18 ZGKPP18 **BA7B19** BBHR19 BCRSVW19 CFQ19 MBKM19 X77PS19

- ${\mathcal P}$ time
- \mathcal{V} time
- communication cost / proof size

- \mathcal{P} time
- \mathcal{V} time
- communication cost / proof size
- cryptographic assumptions

- ${\mathcal P}$ time
- \mathcal{V} time
- communication cost / proof size
- cryptographic assumptions
- trusted setup? per-Φ or universal?

- ${\mathcal P}$ time
- \mathcal{V} time
- communication cost / proof size
- cryptographic assumptions
- trusted setup? per-Φ or universal?
- interactive or non-interactive?

- ${\mathcal P}$ time
- \mathcal{V} time
- communication cost / proof size
- cryptographic assumptions
- trusted setup? per-Φ or universal?
- interactive or non-interactive?
- zero knowledge?

- ${\mathcal P}$ time
- \mathcal{V} time
- communication cost / proof size
- cryptographic assumptions
- trusted setup? per-Φ or universal?
- interactive or non-interactive?
- zero knowledge?
- model of computation / "expressiveness"

- ${\mathcal P}$ time
- \mathcal{V} time
- communication cost / proof size
- cryptographic assumptions
- trusted setup? per-Φ or universal?
- interactive or non-interactive?
- zero knowledge?
- model of computation / "expressiveness"

Bottom line: this is a huge tradeoff space!

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

MPC-in-the-head [IKOS08] ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17]

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

MPC-in-the-head [IKOS08] ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17]

Generalized Σ-protocols [Sch89,CP92,Oka92,Cra97] [BCCGP16], Bulletproofs [BBBPWM18]

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

MPC-in-the-head [IKOS08] ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17]

Generalized Σ-protocols [Sch89,CP92,Oka92,Cra97] [BCCGP16], Bulletproofs [BBBPWM18]

IOPs [KR08,BCS16,RRR16] + Arguments [Kil92,Mic94] Aurora [BCRSVW19], STARK [BBHR19]

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

MPC-in-the-head [IKOS08] ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17]

Generalized Σ-protocols [Sch89,CP92,Oka92,Cra97] [BCCGP16], Bulletproofs [BBBPWM18]

IOPs [KR08,BCS16,RRR16] + Arguments [Kil92,Mic94] Aurora [BCRSVW19], STARK [BBHR19]

Polynomial delegation [KZG10,PST13] Sonic [MBKM19]

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

MPC-in-the-head [IKOS08] ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17]

Generalized Σ-protocols [Sch89,CP92,Oka92,Cra97] [BCCGP16], Bulletproofs [BBBPWM18]

IOPs [KR08,BCS16,RRR16] + Arguments [Kil92,Mic94] Aurora [BCRSVW19], STARK [BBHR19]

Polynomial delegation [KZG10,PST13] Sonic [MBKM19]

Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...

IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hvrax [WTsTW18], Spartan [Set19], [(ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]]

MPC-in-the-head [IKOS08] ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17]

Generalized Σ-protocols [Sch89,CP92,Oka92,Cra97] [BCCGP16], Bulletproofs [BBBPWM18]

IOPs [KR08,BCS16,RRR16] + Arguments [Kil92,Mic94] Aurora [BCRSVW19], STARK [BBHR19]

Polynomial delegation [KZG10,PST13] Sonic [MBKM19]

- Linear PCPs [IK007,BBCGI19] and QAPs [GGPR13] Pepper [SBW11,SMBW12], Ginger [SVPBBW12], Zaatar [SBVBPW13], Pinocchio [PGHR13], [BCGTV13], libSNARK [BCTV14a], [BCTV14b], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], [Gro16], ...
- IPs [GMR85,GKR08,Tha13], MIPs [BGKW88,BTVW14] [CMT12], Giraffe [WJBsTWW17], Hyrax [WTsTW18], Spartan [Set19], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]
- MPC-in-the-head [IKOS08] ZKBoo [GMO16], ZKB++ [CDGORRSZ17], [Ligero [AHIV17]]
- Generalized Σ-protocols [Sch89,CP92,Oka92,Cra97] [BCCGP16], Bulletproofs [BBBPWM18]
- IOPs KR08 BCS16,RRR16] + Arguments [Kil92,Mic94] Aurora [BCRSVW19], STARK [BBHR19]
- Polynomial delegation [KZG10,PST13] Sonic [MBKM19]

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

ZKBoo [GM016], ZKB++ [CDGORRSZ17], Ligero [AHIV17], Aurora [BCRSVW19], STARK [BBHR19]

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

ZKBoo [GM016], ZKB++ [CDGORRSZ17], Ligero [AHIV17], Aurora [BCRSVW19], STARK [BBHR19]

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

Sonic [MBKM19]

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

ZKBoo [GM016], ZKB++ [CDGORRSZ17], Ligero [AHIV17], Aurora [BCRSVW19], STARK [BBHR19]

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

Sonic [MBKM19]

Per- Φ trusted setup

Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

Pinocchio [PGHR13], libSNARK [BCTV14a], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ... Setup and cryptographic assumptions No trusted setup Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] ZKBoo [GM016], ZKB++ [CDGORRSZ17], Ligero [AHIV17], Aurora [BCRSVW19], STARK [BBHR19] [CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional)

Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

Sonic [MBKM19]

Per- Φ trusted setup

Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

Pinocchio [PGHR13], libSNARK [BCTV14a], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ...

 Setup and cryptographic assumptions

 No trusted setup

 Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

 ZKBoo [GM016], ZKB++ [CDGORRSZ17], Ligero [AHIV17],

 Aurora [BCRSVW19], STARK [BBHR19]

 [CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

 (unconditional)

Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

Sonic [MBKM19]

Per- Φ trusted setup

Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

Pinocchio [PGHR13], libSNARK [BCTV14a], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ...

Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19]

```
ZKBoo [GM016], ZKB++ [CDGORRSZ17], Ligero [AHIV17],
Aurora [BCRSVW19], STARK [BBHR19]
```

[CMT12,Tha13], Clover [BTVW14], Giraffe [WJBsTWW17]

Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19]

Sonic [MBKM19]

Per- Φ trusted setup

Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13]

Pinocchio [PGHR13], libSNARK [BCTV14a], ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ... (DH)

(DH/ROM)

(CRHF/ROM)

(unconditional)

Setup and cryptographic assumptions No trusted setup Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM) ZKBoo [GM016], ZKB++ [CDGORRSZ17], Ligero [AHIV17], (CRHF/ROM) Aurora [BCRSVW19], STARK [BBHR19] [CMT12, Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional) Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (KoE) (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19] Sonic [MBKM19] Per- Φ trusted setup Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH) Pinocchio [PGHR13], libSNARK [BCTV14a], (KoE) ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ...

Setup and cryptographic assumptions No trusted setup Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM) ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17], (CRHF/ROM) Aurora [BCRSVW19], STARK [BBHR19] [CMT12, Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional) Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (KoE) (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19] (algebraic group model) Sonic [MBKM19] Per- Φ trusted setup Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH) Pinocchio [PGHR13], libSNARK [BCTV14a], (KoE) ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ...

Setup and cryptographic assumptions No trusted setup Bulletproofs [BBBPWM18], Hyrax [WTsTW18], Spartan [Set19] (DH/ROM) ZKBoo [GMO16], ZKB++ [CDGORRSZ17], Ligero [AHIV17], (CRHF/ROM) Aurora [BCRSVW19], STARK [BBHR19] [CMT12, Tha13], Clover [BTVW14], Giraffe [WJBsTWW17] (unconditional) Universal trusted setup [BCGTV13], libSNARK/vnTinyRAM [BCTV14a], [BCTV14b], (KoE) (ZK)vSQL [ZGKPP17{a,b}], vRAM [ZGKPP18], Libra [XZZPS19] (algebraic group model) Sonic [MBKM19] Per- Φ trusted setup Pepper, Ginger, Zaatar [SBW11,SMBW12,SVPBBW12,SBVBPW13] (DH) (setup amortizes over a batch) Pinocchio [PGHR13], libSNARK [BCTV14a], (KoE) ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ... (setup amortizes forever)

ADSNARK [BBFR15], Geppetto [CFHKKNPZ15], ...

(setup amortizes forever)

Proof system construction

On input x, \mathcal{P} convinces \mathcal{V} that $y = \Phi(x, w)$ for a witness w that \mathcal{P} knows

[BCGTV13,BCTV14a,BCTV14b,CTV15,ZGKPP18,BBHR19]

[BCGTV13,BCTV14a,BCTV14b,CTV15,ZGKPP18,BBHR19]

"FPGA": translate Φ directly to AC or constraints

[..., SVPBBW12, BFRSBW13, SBVBPW13, PGHR13, VSBW13, BBFR15, CFHKKNPZ15, KZMQCPPsS15, WSRHBW15, BCCGP16, BBBPWM18, KPS18, BCRSVW19, MBKM19, Circom, Bellman, ...]

[BCGTV13,BCTV14a,BCTV14b,CTV15,ZGKPP18,BBHR19]

"FPGA": translate Φ directly to AC or constraints

[..., SVPBBW12, BFRSBW13, SBVBPW13, PGHR13, VSBW13, BBFR15, CFHKKNPZ15, KZMQCPPsS15, WSRHBW15, BCCGP16, BBBPWM18, KPS18, BCRSVW19, MBKM19, Circom, Bellman, ...]

■ [GKR08]-derived systems need a *low depth* circuit: [CMT12, WHGsW16, WJBsTWW17, WTsTW18, XZZPS19]

"CPU": run Φ on unrolled FSM

[..., SVPBBW12, BFRSBW13, SBVBPW13, PGHR13, VSBW13, BBFR15, CFHKKNPZ15, KZMQCPPsS15, WSRHBW15, BCCGP16, BBBPWM18, KPS18, BCRSVW19, MBKM19, Circom, Bellman, ...]

[GKR08]-derived systems need a *low depth* circuit: [CMT12, WHGsW16, WJBsTWW17, WTsTW18, XZZPS19]

Performance vs. expressiveness

	special			general
costs	purpose	pure	stateful	control flow
lower	[Tha13] vSQL [ZGKPP17]	Giraffe [WJBsTWW17] Allspice [VSBW13]		beiter
	Bellman gadgetlib [BCTV14a] LegoSNARK [CFQ19] c0c0 [KZMQCPPsS15]	Zaatar [SBVBPW13] Pinocchio [PGHR13] Circom Ginger [SVPBBW12] Pepper [SMBW12] P	xJsnark [KPS18] Geppetto [CFHKKNPZ15] ADSNARK [BBFR15] Pantry [BFRSBW13]	vRAM [ZGKPP18] Buffet [WSRHBW15] STARK [BBHR19]
				(vn)TinyRAM [BCTV14a] [BCGTV13]
higher				[BCTV14b] [CTV15]

Front-end comparison

- xJsnark [KPS18] improves upon Buffet by up to pprox 3 imes
- vRAM [ZGKPP18] (builds on and refines [Tha13] back-end) is $\approx 22 \times$ faster than Buffet for matmult, comparable otherwise

Reality check

Extrapolated ${\mathcal{P}}$ execution time, normalized to native execution

- xJsnark [KPS18] improves upon Buffet by up to $\approx 3 \times$
- vRAM [ZGKPP18] (builds on and refines [Tha13] back-end) is $\approx 22 \times$ faster than Buffet for matmult, comparable otherwise

Reality check 2: reachable problem sizes

For $\approx 10^7$ gates, \mathcal{P} needs $\approx 16-32$ GiB of RAM.

Limiting computations to these sizes yields:

	Pantry	BCTV14a	Buffet
matrix multiplication	215	7	215
$m \times m$	215	,	215
merge sort	8	30	512
k elements	0	52	512
Knuth-Morris-Pratt search		16	
needle length $= n$	n = 4,	n = 10,	n = 250,
haystack length $= \ell$	$\ell = 8$	$\ell = 160$	$\ell = 2900$

IN vRAM [ZGKPP18] increases reachable sizes by $\approx 10 \times$

DIZK [WZCPS18]: distributing \mathcal{P} 's workload

Idea: run ${\mathcal{P}}$ as a distributed computation

DIZK [WZCPS18]: distributing \mathcal{P} 's workload

Idea: run \mathcal{P} as a distributed computation

Challenge: need to compute gigantic FFT! (among others)

DIZK [WZCPS18]: distributing \mathcal{P} 's workload

Idea: run \mathcal{P} as a distributed computation

Challenge: need to compute gigantic FFT! (among others)

Second Size Size n FFT to two \sqrt{n} -sized batches of \sqrt{n} -sized tasks

DIZK: $100 \times$ larger instances

[WZCPS18, Fig. 4]

DIZK: $100 \times$ faster execution

[WZCPS18, Fig. 5]

ZCash (following [BCGGMTV14]) uses ZK for anonymity: no one knows who you are privacy: transaction values are hidden

ZCash (following [BCGGMTV14]) uses ZK for anonymity: no one knows who you are privacy: transaction values are hidden

Confidential Transactions (via [BBBPWM18])

ZCash (following [BCGGMTV14]) uses ZK for anonymity: no one knows who you are privacy: transaction values are hidden

Confidential Transactions (via [BBBPWM18])

CODA (via [CT12,BCTV14b])

constant-sized blockchain via recursive proof composition

ZCash (following [BCGGMTV14]) uses ZK for anonymity: no one knows who you are privacy: transaction values are hidden

Confidential Transactions (via [BBBPWM18])

CODA (via [CT12,BCTV14b])

constant-sized blockchain via recursive proof composition

Private airdrops [BJPW19] (ePrint soon)

free money from the internet using existing credentials
(e.g., GitHub) without revealing your identity
not a general-purpose proof system!

Roll_up https://github.com/barryWhiteHat/roll_up

Let's build a bank out of a smart contract!

Roll_up

https://github.com/barryWhiteHat/roll_up

Let's build a bank out of a smart contract!

Roll_up

https://github.com/barryWhiteHat/roll_up

Let's build a bank out of a smart contract!

Roll_up

https://github.com/barryWhiteHat/roll_up

Let's build a bank out of a smart contract!

Issues: on-chain work and data cost \$\$\$!; slow!

Roll_up https://github.com/barryWhiteHat/roll_up

Let's build a bank out of a smart contract!

Idea: use an off-chain, untrusted aggregator

Roll_up https://github.com/barryWhiteHat/roll_up

Let's build a bank out of a smart contract!

Idea: use an off-chain, *untrusted* aggregator to prove validity of a batch of transactions

Spice [SAGL18]: verifiable concurrent services (in ZK)

(e.g., a cloud-hosted wallet service.)

[SAGL18, Fig. 1]

Issue: need verifiable storage with concurrency

Spice [SAGL18]: verifiable concurrent services (in ZK)

(e.g., a cloud-hosted wallet service.)

Idea: adapt primitives from memory checking literature [BEGKN91,CDDGE03,AEKKMPR17]

(source: Srinath's talk)

Spice [SAGL18]: verifiable *concurrent* services (in ZK)

(e.g., a cloud-hosted wallet service.)

Performance results:

	get	put
Pantry	0.078	0.039
Pantry+Jubjub	0.153	0.076
Geppetto	0.002	0.002
Spice (1-thread)	3.6	3.6
Spice (512-threads)	1366	1370

[SAGL18, Fig. 9]

How can we build trustworthy hardware?

e.g., a custom chip for network packet processing whose manufacture we outsource to a third party

What if the chip's manufacturer inserts a **back door**?

What if the chip's manufacturer inserts a **back door**? Threat: incorrect execution of the packet filter (Other concerns, e.g., secret state, are important but orthogonal)

What if the chip's manufacturer inserts a **back door**?

The Cybercrime Economy

Fake tech gear has infiltrated the U.S. government

by David Goldman @DavidGoldmanCNN

November 8, 2012: 3:10 PM ET

US DoD controls supply chain with trusted foundries.
For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

X Only 5 countries have cutting-edge fabs on-shore

✗ Building a new fab takes \$\$\$\$\$\$, years of R&D

For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

X Only 5 countries have cutting-edge fabs on-shore

- ✗ Building a new fab takes \$\$\$\$\$\$, years of R&D
- Semiconductor scaling: chip area and energy go with square and cube of transistor length ("critical dimension")
- X So using an old fab means an enormous performance hit e.g., India's best on-shore fab is $10^8 \times$ behind state of the art

For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

X Only 5 countries have cutting-edge fabs on-shore

- ✗ Building a new fab takes \$\$\$\$\$\$, years of R&D
- Semiconductor scaling: chip area and energy go with square and cube of transistor length ("critical dimension")
- ✗ So using an old fab means an enormous performance hit e.g., India's best on-shore fab is 10⁸ × behind state of the art

Idea: outsource computations to untrusted chips

 $\begin{array}{l} \textbf{Principal} \\ \Phi \rightarrow \text{designs} \\ \text{for } \mathcal{P}, \mathcal{V} \end{array}$

Wishlist: back-ends

avoiding FFTs

major bottleneck in systems based on QAPs and IOPs; the "quasilinear barrier"

memory-, communication-intensive, costly to distribute

Wishlist: back-ends

avoiding FFTs

major bottleneck in systems based on QAPs and IOPs; the "quasilinear barrier" memory-, communication-intensive, costly to distribute

better multilinear polynomial commitments

 $\scriptstyle{\rm I\!S\!S}$ major bottleneck in systems based on IPs and MIPs; sqrt-sized or expensive for ${\cal V}$ or trusted setup

Wishlist: back-ends avoiding FFTs

 major bottleneck in systems based on QAPs and IOPs; the "quasilinear barrier"

memory-, communication-intensive, costly to distribute

better multilinear polynomial commitments ■ major bottleneck in systems based on IPs and MIPs; sqrt-sized *or* expensive for V *or* trusted setup

MPC-in-the-head beyond the sqrt barrier ZKB++ and Ligero are *super fast* with minimal assumptions; can we get smaller proofs?

Wishlist: back-ends

avoiding FFTs

major bottleneck in systems based on QAPs and IOPs; the "quasilinear barrier" memory-, communication-intensive, costly to distribute

better multilinear polynomial commitments ■ major bottleneck in systems based on IPs and MIPs; sqrt-sized *or* expensive for V *or* trusted setup

MPC-in-the-head beyond the sqrt barrier ZKB++ and Ligero are *super fast* with minimal assumptions; can we get smaller proofs?

updateable SRS with updateable proofs some steps in this direction: [Lip19] https://ia.cr/2019/333

Wishlist: front-ends

beyond the AC model

"natural" computations are ugly as ACs: bitwise ops, comparisons; this is a *major* cost, e.g., in SHA-256 TinyRAM [BCGTV13,BCTV14a], vRAM [ZGKPP18], STARK [BBHR19] point the way; can we go further?

Wishlist: front-ends

beyond the AC model

"natural" computations are ugly as ACs: bitwise ops, comparisons; this is a *major* cost, e.g., in SHA-256 TinyRAM [BCGTV13,BCTV14a], vRAM [ZGKPP18], STARK [BBHR19] point the way; can we go further?

compilers for everyone!

- recent work hand tunes statements, relies on authors' intuition and implicit knowledge let's systematize this knowledge, automate tuning
- \checkmark improved accessibility and real-world deployability
- highly leveraged work for the research community: simpler, higher quality evaluations, easier-to-interpret results

Image design space!

huge design space!

X costs are still high

huge design space!

X costs are still high

✓ nevertheless, lots of cool applications...

huge design space!

X costs are still high

✓ nevertheless, lots of cool applications...

... and plenty of research questions to explore!

rsw@cs.stanford.edu