
Making argument systems for
outsourced computation practical

(sometimes)

Srinath Setty, Richard McPherson,
Andrew J. Blumberg, and Michael Walfish

The University of Texas at Austin

The motivation is 3rd party computing: cloud, volunteers, etc.

We desire the following properties in the above exchange:

1. Unconditional, meaning no assumptions about the server

2. General-purpose, meaning not specialized to a particular f

3. Practical, or at least conceivably practical soon

“f ”, x

y, aux.
client server

check whether y = f(x),
without computing f(x)

By verified outsourced computation, we mean the following:

REJECT ACCEPT

Unfortunately, the constants and proof length are outrageous.

“f ”, x
y client server y’

...

...

Theory can supposedly help. Consider the theory of Probabilistically
Checkable Proofs (PCPs). [ALMSS JACM98, AS JACM98]

Using a naive PCP implementation, verifying multiplication of
400×400 matrices would take 500 trillion CPU years (seriously).

500 trillion is a big number.

For example, I can beat Michael Jordan in one-on-one
basketball only one time out of 500 trillion.

REJECT

Unfortunately, the constants and proof length are outrageous.

“f ”, x
client server y’

...

...

Theory can supposedly help. Consider the theory of Probabilistically
Checkable Proofs (PCPs). [ALMSS JACM98, AS JACM98]

Using a naive PCP implementation, verifying multiplication of
400×400 matrices would take 500 trillion CPU years (seriously).

We have reduced the costs of a PCP-based argument system
by Ishai et al. [CCC07] by 20 orders of magnitude, with proof.

We have implemented the refinements in a system, PEPPER,
that is not ready for prime time but is practical in some cases.

Our conclusion is that PCPs are a potentially promising tool
for building secure systems.

(1) The design of PEPPER

(2) Experimental results, limitations, and outlook

ACCEPT/
REJECT

“f ”, x
client server

y

...

...

The proof is not drawn to scale: it is far too long to be transferred.

Pepper incorporates PCPs but not like this:

(Even the asymptotically short PCPs [BGHSV CCC05, BGHSV SIJC06,

Dinur JACM07, BS SIJC08] have prohibitive constants.)

client server
...

[IKO CCC07]

...

server client
commit request

commit response

q1w q2w q3w

 … Pepper uses an efficient argument [Kilian CRYPTO 92,95]:

Instead of transferring the PCP …

queries
q1, q2, q3, …

PCPQuery(q){
 return <q,w>;
}

ACCEPT/
REJECT

The server’s vector w encodes an execution trace of f(x).

 w

 f ()

What is in w?
(1) An entry for each wire; and

(2) An entry for the product of each pair of wires.

x

x0

x1

xn

 …

A
N
D

O
R

A
N
D

0
1

1

1 0

y0

y1

1

0

0

1

1
N
O
T

N
O
T

1

0

N
O
T 0

0

1

0

client server
...

[IKO CCC07]

This is still too costly (by a factor of 1022), but it is promising.

...

server

 … Pepper uses an efficient argument [Kilian CRYPTO 92,95]:

Instead of transferring the PCP …

PCPQuery(q){
 return <q,w>;
}

client
commit request

queries

ACCEPT/
REJECT

q1w q2w q3w

q1, q2, q3, …

commit response

PEPPER incorporates four refinements to [IKO CCC07], with proof.

“f ”
y

client server

response scalars: q1w, q2w, q3w, …

 w

commit request

commit response

, x

query vectors: q1, q2, q3, …

ACCEPT/
REJECT

Boolean
circuit

Arithmetic
circuit

Arithmetic circuit
with concise gates

This refinement works best for a restricted class of computations:
straight-line, parallelizable, numerical.

Consider m × m matrix multiplication as our computation f:

×

×

×

×

+

+

+ ab  ab ab

something
gross

w has O(m6) entries

w has O(m4) entries

 w

•  The Boolean circuit has O(m3) gates

•  The new representation has m2 gates

“f ”
y

client server

 w

commit request

commit response

, x

query vectors: q1, q2, q3, …

✔

response scalars: q1w, q2w, q3w, … ACCEPT/
REJECT

w

server

We can sometimes exploit the structure of a computation.

This eliminates the server’s PCP-based overhead, and may
apply to PCPs more broadly.

before: O(m4) entries after: m3 entries

×
×
×

9

×
×
×

4

9

4 client doesn’t
care

Consider m × m matrix multiplication as our computation f:

“f ”
y

client server

 w

commit request

commit response

, x

query vectors: q1, q2, q3, …

✔

✔

response scalars: q1w, q2w, q3w, … ACCEPT/
REJECT

query vectors: q1, q2, q3, …

w1

w2

w3

client server

The client amortizes its overhead by reusing queries over
multiple runs. Each run has the same f but different input x.

PEPPER generalizes the commitment primitive of Ishai et al. [CCC07].

With the new primitive, the client can issue multiple queries for the
price of encrypting only a single query.

“f ”, x
y client server

commit request

commit response

query vectors: q1, q2, q3, …
 w

✔

✔

✔

response scalars: q1w, q2w, q3w, … ACCEPT/
REJECT

(1) The design of PEPPER

(2) Experimental results, limitations, and outlook

✔

Consider amortized costs for multiplication of 400×400 matrices:

Under the theory,
naively applied Under PEPPER

client CPU time >100 trillion years 1.1 seconds

server CPU time >100 trillion years 1.6 hours

(assumes 2.4 Ghz CPU)

However, the batch size is large, so these numbers are not ideal.

1.  The client breaks even only for large batch sizes.

2.  The server’s burden is too high, still.

3.  The approach is plausible for only a class of computations.

PEPPER is not ready for prime time, for several reasons:

We relate PEPPER to prior work in terms of our three goals.

1. General-purpose and practical; gives up unconditional

  Replication ([Castro & Liskov TOCS02]), trusted hardware ([Chiesa &

Tromer ICS10, SSW TRUST10]), auditing ([DJMM ICDCS04, HKD SOSP07,

Kissner & Song ACNS04, MWR NDSS99])

2. Unconditional; gives up being general-purpose
  [BGV CRYPTO11, Boneh & Freeman EUROCRYPT11, Golle & Mironov RSA01, Sion

VLDB05, THHSY PET09, WRW INFOCOM11, Atallah & Frikken ASIACCS10,
Freivalds MFCS79]

  Toward practical Interactive Proofs [CMT ITCS12, GKR STOC08]

3. Unconditional and general-purpose; gives up practicality

  Fully homomorphic encryption, secure multi-party computation
[CKV CRYPTO10, GGP CRYPTO10, AIK ICALP10]

We have reduced the costs of a PCP-based argument system
by Ishai et al. [CCC07] by 20 orders of magnitude, with proof.

We have implemented the refinements in a system, PEPPER,
that is not ready for prime time but is practical in some cases.

Our conclusions are that PCPs are a potentially useful tool for
real systems, and that the research area is promising.

