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Theory (PCPs, arguments, etc.) offers a solution ...
but only in theory
[ALMSS92, Micali00, BCC88, Kilian92, IKO07] 



CMT, TRMP, and Thaler [Cormode et al. ITCS12, Thaler et al. 
HotCloud12, Thaler CRYPTO13]

Pepper, Ginger, Zaatar, and Allspice [HotOS11, NDSS12, USENIX 

SECURITY12, EuroSys13, IEEE S&P13]

Pinocchio [Gennaro et al. EUROCRYPT13, Parno et al. IEEE S&P13]

BCGTV [Ben-Sasson et al. CRYPTO13]

Recent projects refine and implement the theory

Highlights

Compile C programs into verifiable computations

Reduce costs by over a factor of 1020



Remaining roadblocks in bringing the 
theory to practice

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large
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Yes and no.  Consider replication, trusted hardware, etc.:

(1) Far less expensive than Pantry ... but impose assumptions

• Long-term, we want unconditional, cost-effective guarantees

• Pantry is a step toward this goal

(2) Pantry enables new applications for which there are not 
pragmatic alternatives

• Computations over private server state, etc.

Aren’t there more pragmatic alternatives?



Rest of this talk:

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large

[Eliminate]

[Mitigate]

[Retain]

1 2

3



client 
executable

server 
executable

program in a 
subset of C

input

output

accept/reject

client 
executable

server 
executable

 = short proof

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]



program in a 
subset of C

input

output

accept/reject

client 
executable

server 
executable

 = short proof

client 
executable

server 
executable

theoretical 
tools 
(PCPs, 
etc.)

constraints 
on execution

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]



program in a 
subset of C

input

output

accept/reject

client 
executable

server 
executable

 = short proof

client 
executable

server 
executable

theoretical 
tools 
(PCPs, 
etc.)

constraints 
on execution

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]



0 = X - i
0 = Y - (X + 1)
0 = Y - r

int increment(int i) {
  r = i + 1;
  return r;
}

Programs compile into a set of constraints



Programs compile into a set of constraints

Suppose the input is 6

If the output is 7

There is a solution

If the output is 8

There is no solution

0 = X - i
0 = Y - (X + 1)
0 = Y - r

Correct input/output pair means that the equations have a 
solution (i.e., constraints are satisfiable)

0 = X - 6  
0 = Y - (X + 1)
0 = Y - 7

0 = X - 6  
0 = Y - (X + 1)
0 = Y - 8

int increment(int i) {
  r = i + 1;
  return r;
}



Constraints can represent various program structures

Observe:

if X1 == X2, then Y must be 0, to satisfy the first. 

if X1 != X2, then Y must be 1, to satisfy the second.

0 = (X1 − X2) • M − Y

0 = (1 − Y) • (X1 − X2)

Example:  “Y = (X1 != X2)”
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Verification protocol:

input

output

accept/reject

client server

 = short proof

...

queries

a large error 
correcting code

The short proof is the queried values from the large encoding

constraints on 
execution

a solution to 
constraints

solve

encode

constraints on 
execution

The client has to amortize its query generation costs to save 
resources relative to local execution

queries
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satisfiability of constraints ⇔ 

correct execution

a valid proof ⇔ 

satisfiability of constraints

How can we design constraints such that their 
satisfiability is tantamount to correct storage 

interaction?

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]



A naive approach
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....

B = Ssize - (A-size) • Csize

B = read(A)
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   case 0: B = S0; break;
   case 1: B = S1; break;
   ...
   case size: B = Ssize; break;
 }



A naive approach
B = S0 - (A-0) • C0

B = S1 - (A-1) • C1

....

B = Ssize - (A-size) • Csize

B = read(A)

S0, S1, ..., Ssize correspond to 
cells of storage 

 switch (A) {
   case 0: B = S0; break;
   case 1: B = S1; break;
   ...
   case size: B = Ssize; break;
 }

• Expensive: requires one constraint for each address

• Incomplete: provides only volatile state
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To run a computation with remote inputs, the above 
client will need to:

1. Fetch blocks from the storage server

2. Check the integrity of the blocks using digests

3. Run the computation

Consider an untrusted block store:

untrusted
storage 
server

H(block) = digest, H is a cryptographic hash function

block

?

digest
untrusted
storage 
client

Pantry’s approach to state: verifiably run the steps 
below on the server, by compiling these steps into 
constraints, without having to handle data blocks

Existing work designs higher level abstractions using 
an untrusted block store [Merkle CRYPTO87, Blum et al. FOCS91, Fu et al. 
OSDI00, Li et al. OSDI04]



Pantry’s approach to state, with an example

YES/NO
accept/reject

client

digest,d, and short string, X
B

Consider a substring search with a remote data block

server
a data block



Pantry’s approach to state, with an example

YES/NO
accept/reject

client

digest,d, and short string, X
B

Consider a substring search with a remote data block

d0 = B0 + B7 + .. 
d1 = B1 + B8 + .. 

d25 = B73 ⦁ B84 + .. 
....

server

Z0 = X0 - B0
....
Y = 1 ⦁ Z0 + .. 

check if H(B) = d

a data block

if (x is a substring in B)
output = YES

else
output = NO



• Satisfiability of the above constraints ⇔ passing hash checks 

• Passing hash checks is computationally infeasible without 
the right data blocks

d0 = B0 + B7 + .. 
d1 = B1 + B8 + .. 

d25 = B73 ⦁ B84 + .. 
....

Z0 = X0 - B0
....
Y = 1 ⦁ Z0 + .. 

check if H(B) = d

if (x is a substring in B)
output = YES

else
output = NO



We add two primitives to Pantry’s C to expose state

• PutBlock(block): stores “block” at location H(block)

• GetBlock(digest): returns a block such that H(block) = digest



We add two primitives to Pantry’s C to expose state

Y = B+1

function (digest d)
  int b = GetBlock(d)
  y = b+1
  return y  

• PutBlock(block): stores “block” at location H(block)

• GetBlock(digest): returns a block such that H(block) = digest
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d1 = B1 + B8 + .. 

d25 = B73 ⦁ B84 + .. 
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Representation of 
H in constraints



We add two primitives to Pantry’s C to expose state

function (digest d)
  int b = GetBlock(d)
  y = b+1
  return y  

• PutBlock(block): stores “block” at location H(block)

• GetBlock(digest): returns a block such that H(block) = digest

Representation of 
H in constraints

We use a hash function that has an efficient representation as a 
set of constraints [Ajtai STOC96]

Y = B+1

d0 = B0 + B7 + .. 
d1 = B1 + B8 + .. 

d25 = B73 ⦁ B84 + .. 

....
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Pantry: an extension to Zaatar and Pinocchio
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theoretical 
tools 
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etc.)

constraints 
on execution

program in a 
subset of C 
+ GetBlock/

PutBlock

• a valid proof ⇔ “I know a satisfying assignment to constraints”

• satisfiability of constraints ⇔ hash checks pass

• hash checks pass ⇔ correct storage interaction



Verifiable stateful applications from C code with Pantry:

client 
executable

server 
executable

program in a 
subset of C 
+ GetBlock/

PutBlock

MapReduce

Merkle 
CRYPTO87, Blum 

et al. FOCS91

hidden state apps

Database queries

RAM
(in the paper)

(next)



• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large
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Pantry enables applications where the client’s setup 
costs are tolerable:

• Data parallel computations (MapReduce, etc.) that 
compute over remote state

‣ Have multiple identical computations

• Hidden state applications

‣ The client cannot, in principle, execute on its own



The client is assured that a MapReduce job was 
executed correctly—without ever touching the data

client
out_digests

map(), reduce(), in_digests

Mi Ri



The client is assured that a MapReduce job was 
executed correctly—without ever touching the data

client

map(), reduce(), in_digests

Mi Ri

mapper(Dig in_digest, Dig *d) {
  in = GetBlock(in_digest)
  map(in, out)
  for i=1 to R 
   d[i] = PutBlock(out[i])
}

reducer(Dig *d, Dig *out_digest) {
  for i=1 to M: 
    in[i] = GetBlock(d[i])
  reduce(in, out)
  out_digest = PutBlock(out)
}

map() and reduce() are expressed in Pantry’s subset of C

out_digests



The client is assured that a MapReduce job was 
executed correctly—without ever touching the data

client

map(), reduce(), in_digests

mapper( ... ) {
  in = GetBlock(in_digest)
  map(in, out)
  for i=1 to R 
   d[i] = PutBlock(out[i])
}

reducer( ... ) {
  for i=1 to M: 
    in[i] = GetBlock(d[i])
  reduce(in, out)
  out_digest = PutBlock(out)
}

The two phases are handled separately:

out_digests

mapper( ... ) {
  in = GetBlock(in_digest)
  map(in, out)
  for i=1 to R 
   d[i] = PutBlock(out[i])
}

mapper( ... ) {
  in = GetBlock(in_digest)
  map(in, out)
  for i=1 to R 
   d[i] = PutBlock(out[i])
}

reducer( ... ) {
  for i=1 to M: 
    in[i] = GetBlock(d[i])
  reduce(in, out)
  out_digest = PutBlock(out)
}

reducer( ... ) {
  for i=1 to M: 
    in[i] = GetBlock(d[i])
  reduce(in, out)
  out_digest = PutBlock(out)
}

in_digests out_digests

Mi Ri



• Data parallel computations (MapReduce, etc.) that 
compute over remote state

‣ Have multiple identical computations

• Hidden state applications

‣ The client cannot, in principle, execute on its own

Pantry enables applications where the client’s setup 
costs are tolerable:
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Hidden state applications

Client Server

lookup(

“yes”, proof

accept/reject list of faces

• Key idea: Pantry’s storage + Pinocchio’s zero-knowledge

• Wrinkles: 
‣ Pantry’s digests aren’t information hiding (wrap 

digests with a cryptographic commitment scheme)
‣ Standard commitment schemes are expensive (use 

an HMAC-based scheme that is 10X cheaper)

• Other applications: tolling, regression analysis, etc.

• Upshot: with only C programs, one can get powerful 
guarantees

)



Benchmark applications and implementation

Benchmark applications:

‣ MapReduce: nucleotide substring search, dot product, 
nearest neighbor search, and covariance computation

‣ Hidden state: face matching, tolling, and regression 
analysis

Distributed implementation of the server

C++, Java, Go, and Python code; HTTP/Open MPI to 
distribute server’s work



Evaluation questions

When does Pantry’s client save resources relative to 
locally executing the computation? 

What are the costs of supporting hidden state?

What are the costs of Pantry’s server, relative to simply 
executing the computation?

1

2

3



Pantry’s client saves resources at sufficiently large 
input sizes
MapReduce job: nucleotide substring search in which a mapper gets 
600K nucleotides and outputs matching locations
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Pantry’s client saves resources at sufficiently large 
input sizes
MapReduce job: nucleotide substring search in which a mapper gets 
600K nucleotides and outputs matching locations
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Graph is an extrapolation (slopes and y intercepts determined 
with experiments that use up to 250 machines and up to 1.2 
billion nucleotides)



Cost of supporting hidden state applications

Server holds 128 face fingerprints (hidden state: 15 KB)

proof size: 288 bytes

client’s CPU time: 7 ms

good news:

network (setup), server’s storage (ongoing): 170 MB

server’s CPU time: 7.8 min

bad news:



Pantry’s server’s cost is many orders of magnitude 
slower than simply executing the computation

orders of magnitude slower than native execution

nucleotide substring 
search

select query 
with a DB

face matching

C
PU

 t
im

e 
(μ

s)

100

103
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109

baseline

Pantry

sources of overhead: constraints + crypto ops. proportional 
to #constraints



Recap

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large

[Eliminate]

[Mitigate]

[Retain]



Prior work on verifiable computation

Make assumptions about the server’s failure modes or 
give up generality:

Replication [Castro & Liskov TOCS02], trusted hardware [Chiesa & Tromer 
ICS10, Sadeghi et al. TRUST10], and auditing [Monrose et al. NDSS99, Haeberlen et al. 
SOSP07]

Special-purpose [Freivalds MFCS79, Golle & Mironov RSA01, Sion VLDB05, Benabbas et 
al. CRYPTO11, Boneh & Freeman EUROCRYPT11]

Unconditional guarantees and general but not geared 
to practice:

Use fully homomorphic encryption [GGP, Chung et al.CRYPTO10]

Theory of PCPs, IPs, arguments [GMR85, Ben-Or et al. STOC88, Babai et al. 
STOC91, Kilian STOC92, ALMSS92, AS92, Goldwasser et al. STOC 2008, Bitansky et al. ITCS12]



Pepper, Ginger, Zaatar,  Allspice

Four projects have produced implementations

HotOS11 

NDSS12
USENIX SECURITY12

EuroSys13
IEEE S&P13

Cormode et al. ITCS12
Thaler et al. HotCloud12

Thaler CRYPTO13

Gennaro et al. EUROCRYPT13 
Parno et al. IEEE S&P13

Ben-Sasson et al. CRYPTO13
Ben-Sasson et al. ITCS13

Bitansky et al. TCC13

CMT, Thaler

Pinocchio, GGPR

BCGTV



Next steps for the area of verifiable computing

• Reducing the server’s overhead (currently 3-6 orders of 
magnitude more than native execution)

• Avoiding the client’s setup costs efficiently

• Enhancing the computational model (currently loops 
are unrolled, storage operations need a lot of 
constraints, etc.)



Takeaways

• Pantry takes another step in bringing powerful theory 
behind verifiable computation into practice

‣ Pantry enables realistic, stateful computations: 
MapReduce, database queries, hidden state 
applications, etc.

• We think: the machinery underlying Pantry or its variant 
will be a key tool in building future secure systems


