
Verifying	 computa1ons	 with	 state

Benjamin	 Braun,	 Ariel	 Feldman†,	 Zuocheng	 Ren,	
Srinath	 Se9y,	 Andrew	 Blumberg,	 and	 Michael	 Walfish

The	 University	 of	 Texas	 at	 AusFn
†University	 of	 Pennsylvania

a MapReduce job

client server

output

the server could
compute incorrectly

?

a MapReduce job

client server

output

check the proof quickly

short proof

?

Theory (PCPs, arguments, etc.) offers a solution ...
but only in theory
[ALMSS92, Micali00, BCC88, Kilian92, IKO07]

CMT, TRMP, and Thaler [Cormode et al. ITCS12, Thaler et al.
HotCloud12, Thaler CRYPTO13]

Pepper, Ginger, Zaatar, and Allspice [HotOS11, NDSS12, USENIX

SECURITY12, EuroSys13, IEEE S&P13]

Pinocchio [Gennaro et al. EUROCRYPT13, Parno et al. IEEE S&P13]

BCGTV [Ben-Sasson et al. CRYPTO13]

Recent projects refine and implement the theory

Highlights

Compile C programs into verifiable computations

Reduce costs by over a factor of 1020

Remaining roadblocks in bringing the
theory to practice

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large

Remaining roadblocks in bringing the
theory to practice

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large

[Eliminate]

[Mitigate]

[Retain]

Pantry
(this talk)

Yes and no.

Aren’t there more pragmatic alternatives?

Yes and no. Consider replication, trusted hardware, etc.:

Aren’t there more pragmatic alternatives?

Yes and no. Consider replication, trusted hardware, etc.:

(1) Far less expensive than Pantry ... but impose assumptions

• Long-term, we want unconditional, cost-effective guarantees

• Pantry is a step toward this goal

(2) Pantry enables new applications for which there are not
pragmatic alternatives

• Computations over private server state, etc.

Aren’t there more pragmatic alternatives?

Rest of this talk:

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large

[Eliminate]

[Mitigate]

[Retain]

1 2

3

client
executable

server
executable

program in a
subset of C

input

output

accept/reject

client
executable

server
executable

 = short proof

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]

program in a
subset of C

input

output

accept/reject

client
executable

server
executable

 = short proof

client
executable

server
executable

theoretical
tools
(PCPs,
etc.)

constraints
on execution

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]

program in a
subset of C

input

output

accept/reject

client
executable

server
executable

 = short proof

client
executable

server
executable

theoretical
tools
(PCPs,
etc.)

constraints
on execution

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]

0 = X - i
0 = Y - (X + 1)
0 = Y - r

int increment(int i) {
 r = i + 1;
 return r;
}

Programs compile into a set of constraints

Programs compile into a set of constraints

Suppose the input is 6

If the output is 7

There is a solution

If the output is 8

There is no solution

0 = X - i
0 = Y - (X + 1)
0 = Y - r

Correct input/output pair means that the equations have a
solution (i.e., constraints are satisfiable)

0 = X - 6
0 = Y - (X + 1)
0 = Y - 7

0 = X - 6
0 = Y - (X + 1)
0 = Y - 8

int increment(int i) {
 r = i + 1;
 return r;
}

Constraints can represent various program structures

Observe:

if X1 == X2, then Y must be 0, to satisfy the first.

if X1 != X2, then Y must be 1, to satisfy the second.

0 = (X1 − X2) • M − Y

0 = (1 − Y) • (X1 − X2)

Example: “Y = (X1 != X2)”

program in a
subset of C

input

output

accept/reject

client
executable

server
executable

 = short proof

client
executable

server
executable

theoretical
tools
(PCPs,
etc.)

constraints
on execution

satisfiability of constraints ⇔
correct execution

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]

program in a
subset of C

input

output

accept/reject

client
executable

server
executable

 = short proof

client
executable

server
executable

theoretical
tools
(PCPs,
etc.)

constraints
on execution

satisfiability of constraints ⇔
correct execution

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]

Verification protocol:

input

output

accept/reject

client server

 = short proof

...

queries

a large error
correcting code

constraints on
execution

a solution to
constraints

solve

encode

Verification protocol:

input

output

accept/reject

client server

 = short proof

...

queries

a large error
correcting code

constraints on
execution

a solution to
constraints

solve

encode

constraints on
execution

queries

Verification protocol:

input

output

accept/reject

client server

 = short proof

...

queries

a large error
correcting code

The short proof is the queried values from the large encoding

constraints on
execution

a solution to
constraints

solve

encode

constraints on
execution

The client has to amortize its query generation costs to save
resources relative to local execution

queries

program in a
subset of C

input

output

accept/reject

client
executable

server
executable

 = short proof

client
executable

server
executable

theoretical
tools
(PCPs,
etc.)

constraints
on execution

satisfiability of constraints ⇔

correct execution

a valid proof ⇔

satisfiability of constraints

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]

program in a
subset of C

input

output

accept/reject

client
executable

server
executable

 = short proof

client
executable

server
executable

theoretical
tools
(PCPs,
etc.)

constraints
on execution

satisfiability of constraints ⇔

correct execution

a valid proof ⇔

satisfiability of constraints

How can we design constraints such that their
satisfiability is tantamount to correct storage

interaction?

Pantry’s base: Zaatar [EuroSys13] and Pinocchio [IEEE S&P13]

A naive approach
B = S0 - (A-0) • C0

B = S1 - (A-1) • C1

....

B = Ssize - (A-size) • Csize

B = read(A)

S0, S1, ..., Ssize correspond to
cells of storage

A naive approach
B = S0 - (A-0) • C0

B = S1 - (A-1) • C1

....

B = Ssize - (A-size) • Csize

B = read(A)

S0, S1, ..., Ssize correspond to
cells of storage

 switch (A) {
 case 0: B = S0; break;
 case 1: B = S1; break;
 ...
 case size: B = Ssize; break;
 }

A naive approach
B = S0 - (A-0) • C0

B = S1 - (A-1) • C1

....

B = Ssize - (A-size) • Csize

B = read(A)

S0, S1, ..., Ssize correspond to
cells of storage

 switch (A) {
 case 0: B = S0; break;
 case 1: B = S1; break;
 ...
 case size: B = Ssize; break;
 }

• Expensive: requires one constraint for each address

• Incomplete: provides only volatile state

Consider an untrusted block store:

untrusted
storage
server

H(block) = digest, H is a cryptographic hash function

block

?

digest
untrusted
storage
client

Consider an untrusted block store:

untrusted
storage
server

H(block) = digest, H is a cryptographic hash function

block

?

digest
untrusted
storage
client

To run a computation with remote inputs, the above
client will need to:

1. Fetch blocks from the storage server

2. Check the integrity of the blocks using digests

3. Run the computation

To run a computation with remote inputs, the above
client will need to:

1. Fetch blocks from the storage server

2. Check the integrity of the blocks using digests

3. Run the computation

Consider an untrusted block store:

untrusted
storage
server

H(block) = digest, H is a cryptographic hash function

block

?

digest
untrusted
storage
client

Pantry’s approach to state: verifiably run the steps
below on the server, by compiling these steps into
constraints, without having to handle data blocks

To run a computation with remote inputs, the above
client will need to:

1. Fetch blocks from the storage server

2. Check the integrity of the blocks using digests

3. Run the computation

Consider an untrusted block store:

untrusted
storage
server

H(block) = digest, H is a cryptographic hash function

block

?

digest
untrusted
storage
client

Pantry’s approach to state: verifiably run the steps
below on the server, by compiling these steps into
constraints, without having to handle data blocks

Existing work designs higher level abstractions using
an untrusted block store [Merkle CRYPTO87, Blum et al. FOCS91, Fu et al.
OSDI00, Li et al. OSDI04]

Pantry’s approach to state, with an example

YES/NO
accept/reject

client

digest,d, and short string, X
B

Consider a substring search with a remote data block

server
a data block

Pantry’s approach to state, with an example

YES/NO
accept/reject

client

digest,d, and short string, X
B

Consider a substring search with a remote data block

d0 = B0 + B7 + ..
d1 = B1 + B8 + ..

d25 = B73 ⦁ B84 + ..
....

server

Z0 = X0 - B0
....
Y = 1 ⦁ Z0 + ..

check if H(B) = d

a data block

if (x is a substring in B)
output = YES

else
output = NO

• Satisfiability of the above constraints ⇔ passing hash checks

• Passing hash checks is computationally infeasible without
the right data blocks

d0 = B0 + B7 + ..
d1 = B1 + B8 + ..

d25 = B73 ⦁ B84 + ..
....

Z0 = X0 - B0
....
Y = 1 ⦁ Z0 + ..

check if H(B) = d

if (x is a substring in B)
output = YES

else
output = NO

We add two primitives to Pantry’s C to expose state

• PutBlock(block): stores “block” at location H(block)

• GetBlock(digest): returns a block such that H(block) = digest

We add two primitives to Pantry’s C to expose state

Y = B+1

function (digest d)
 int b = GetBlock(d)
 y = b+1
 return y

• PutBlock(block): stores “block” at location H(block)

• GetBlock(digest): returns a block such that H(block) = digest

d0 = B0 + B7 + ..
d1 = B1 + B8 + ..

d25 = B73 ⦁ B84 + ..

....

Representation of
H in constraints

We add two primitives to Pantry’s C to expose state

function (digest d)
 int b = GetBlock(d)
 y = b+1
 return y

• PutBlock(block): stores “block” at location H(block)

• GetBlock(digest): returns a block such that H(block) = digest

Representation of
H in constraints

We use a hash function that has an efficient representation as a
set of constraints [Ajtai STOC96]

Y = B+1

d0 = B0 + B7 + ..
d1 = B1 + B8 + ..

d25 = B73 ⦁ B84 + ..

....

input

output

accept/reject

client
executable

server
executable

 = short proof

Pantry: an extension to Zaatar and Pinocchio

client
executable

server
executable

theoretical
tools
(PCPs,
etc.)

constraints
on execution

program in a
subset of C
+ GetBlock/

PutBlock

• a valid proof ⇔ “I know a satisfying assignment to constraints”

• satisfiability of constraints ⇔ hash checks pass

• hash checks pass ⇔ correct storage interaction

Verifiable stateful applications from C code with Pantry:

client
executable

server
executable

program in a
subset of C
+ GetBlock/

PutBlock

MapReduce

Merkle
CRYPTO87, Blum

et al. FOCS91

hidden state apps

Database queries

RAM
(in the paper)

(next)

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large

[Eliminate]

[Mitigate]

[Retain]

1 2

3

Pantry enables applications where the client’s setup
costs are tolerable:

• Data parallel computations (MapReduce, etc.) that
compute over remote state

‣ Have multiple identical computations

• Hidden state applications

‣ The client cannot, in principle, execute on its own

The client is assured that a MapReduce job was
executed correctly—without ever touching the data

client
out_digests

map(), reduce(), in_digests

Mi Ri

The client is assured that a MapReduce job was
executed correctly—without ever touching the data

client

map(), reduce(), in_digests

Mi Ri

mapper(Dig in_digest, Dig *d) {
 in = GetBlock(in_digest)
 map(in, out)
 for i=1 to R
 d[i] = PutBlock(out[i])
}

reducer(Dig *d, Dig *out_digest) {
 for i=1 to M:
 in[i] = GetBlock(d[i])
 reduce(in, out)
 out_digest = PutBlock(out)
}

map() and reduce() are expressed in Pantry’s subset of C

out_digests

The client is assured that a MapReduce job was
executed correctly—without ever touching the data

client

map(), reduce(), in_digests

mapper(...) {
 in = GetBlock(in_digest)
 map(in, out)
 for i=1 to R
 d[i] = PutBlock(out[i])
}

reducer(...) {
 for i=1 to M:
 in[i] = GetBlock(d[i])
 reduce(in, out)
 out_digest = PutBlock(out)
}

The two phases are handled separately:

out_digests

mapper(...) {
 in = GetBlock(in_digest)
 map(in, out)
 for i=1 to R
 d[i] = PutBlock(out[i])
}

mapper(...) {
 in = GetBlock(in_digest)
 map(in, out)
 for i=1 to R
 d[i] = PutBlock(out[i])
}

reducer(...) {
 for i=1 to M:
 in[i] = GetBlock(d[i])
 reduce(in, out)
 out_digest = PutBlock(out)
}

reducer(...) {
 for i=1 to M:
 in[i] = GetBlock(d[i])
 reduce(in, out)
 out_digest = PutBlock(out)
}

in_digests out_digests

Mi Ri

• Data parallel computations (MapReduce, etc.) that
compute over remote state

‣ Have multiple identical computations

• Hidden state applications

‣ The client cannot, in principle, execute on its own

Pantry enables applications where the client’s setup
costs are tolerable:

Hidden state applications

Client Server

lookup(

“yes”, proof

accept/reject list of faces

• Key idea: Pantry’s storage + Pinocchio’s zero-knowledge

)

Hidden state applications

Client Server

lookup(

“yes”, proof

accept/reject list of faces

• Key idea: Pantry’s storage + Pinocchio’s zero-knowledge

• Wrinkles:
‣ Pantry’s digests aren’t information hiding (wrap

digests with a cryptographic commitment scheme)
‣ Standard commitment schemes are expensive (use

an HMAC-based scheme that is 10X cheaper)

)

Hidden state applications

Client Server

lookup(

“yes”, proof

accept/reject list of faces

• Key idea: Pantry’s storage + Pinocchio’s zero-knowledge

• Wrinkles:
‣ Pantry’s digests aren’t information hiding (wrap

digests with a cryptographic commitment scheme)
‣ Standard commitment schemes are expensive (use

an HMAC-based scheme that is 10X cheaper)

• Other applications: tolling, regression analysis, etc.

)

Hidden state applications

Client Server

lookup(

“yes”, proof

accept/reject list of faces

• Key idea: Pantry’s storage + Pinocchio’s zero-knowledge

• Wrinkles:
‣ Pantry’s digests aren’t information hiding (wrap

digests with a cryptographic commitment scheme)
‣ Standard commitment schemes are expensive (use

an HMAC-based scheme that is 10X cheaper)

• Other applications: tolling, regression analysis, etc.

• Upshot: with only C programs, one can get powerful
guarantees

)

Benchmark applications and implementation

Benchmark applications:

‣ MapReduce: nucleotide substring search, dot product,
nearest neighbor search, and covariance computation

‣ Hidden state: face matching, tolling, and regression
analysis

Distributed implementation of the server

C++, Java, Go, and Python code; HTTP/Open MPI to
distribute server’s work

Evaluation questions

When does Pantry’s client save resources relative to
locally executing the computation?

What are the costs of supporting hidden state?

What are the costs of Pantry’s server, relative to simply
executing the computation?

1

2

3

Pantry’s client saves resources at sufficiently large
input sizes
MapReduce job: nucleotide substring search in which a mapper gets
600K nucleotides and outputs matching locations

Pantry’s client saves resources at sufficiently large
input sizes
MapReduce job: nucleotide substring search in which a mapper gets
600K nucleotides and outputs matching locations

0

6

12

18

24

0 12 24 36 48 60

Pantry

baseline

C
PU

 t
im

e
(m

in
ut

es
)

number of nucleotides in the input dataset (billions)

Pantry’s client saves resources at sufficiently large
input sizes
MapReduce job: nucleotide substring search in which a mapper gets
600K nucleotides and outputs matching locations

0

6

12

18

24

0 12 24 36 48 60

Pantry

baseline

C
PU

 t
im

e
(m

in
ut

es
)

number of nucleotides in the input dataset (billions)

Graph is an extrapolation (slopes and y intercepts determined
with experiments that use up to 250 machines and up to 1.2
billion nucleotides)

Cost of supporting hidden state applications

Server holds 128 face fingerprints (hidden state: 15 KB)

proof size: 288 bytes

client’s CPU time: 7 ms

good news:

network (setup), server’s storage (ongoing): 170 MB

server’s CPU time: 7.8 min

bad news:

Pantry’s server’s cost is many orders of magnitude
slower than simply executing the computation

orders of magnitude slower than native execution

nucleotide substring
search

select query
with a DB

face matching

C
PU

 t
im

e
(μ

s)

100

103

106

109

baseline

Pantry

sources of overhead: constraints + crypto ops. proportional
to #constraints

Recap

• The computations have to be stateless

• The client incurs a large setup cost

• The server’s overheads are large

[Eliminate]

[Mitigate]

[Retain]

Prior work on verifiable computation

Make assumptions about the server’s failure modes or
give up generality:

Replication [Castro & Liskov TOCS02], trusted hardware [Chiesa & Tromer
ICS10, Sadeghi et al. TRUST10], and auditing [Monrose et al. NDSS99, Haeberlen et al.
SOSP07]

Special-purpose [Freivalds MFCS79, Golle & Mironov RSA01, Sion VLDB05, Benabbas et
al. CRYPTO11, Boneh & Freeman EUROCRYPT11]

Unconditional guarantees and general but not geared
to practice:

Use fully homomorphic encryption [GGP, Chung et al.CRYPTO10]

Theory of PCPs, IPs, arguments [GMR85, Ben-Or et al. STOC88, Babai et al.
STOC91, Kilian STOC92, ALMSS92, AS92, Goldwasser et al. STOC 2008, Bitansky et al. ITCS12]

Pepper, Ginger, Zaatar, Allspice

Four projects have produced implementations

HotOS11

NDSS12
USENIX SECURITY12

EuroSys13
IEEE S&P13

Cormode et al. ITCS12
Thaler et al. HotCloud12

Thaler CRYPTO13

Gennaro et al. EUROCRYPT13
Parno et al. IEEE S&P13

Ben-Sasson et al. CRYPTO13
Ben-Sasson et al. ITCS13

Bitansky et al. TCC13

CMT, Thaler

Pinocchio, GGPR

BCGTV

Next steps for the area of verifiable computing

• Reducing the server’s overhead (currently 3-6 orders of
magnitude more than native execution)

• Avoiding the client’s setup costs efficiently

• Enhancing the computational model (currently loops
are unrolled, storage operations need a lot of
constraints, etc.)

Takeaways

• Pantry takes another step in bringing powerful theory
behind verifiable computation into practice

‣ Pantry enables realistic, stateful computations:
MapReduce, database queries, hidden state
applications, etc.

• We think: the machinery underlying Pantry or its variant
will be a key tool in building future secure systems

