Doubly-efficient zkSNARKs without trusted setup

Riad S. Wahby*, Ioanna Tzialla ${ }^{\circ}$, abhi shelat ${ }^{\dagger}$, Justin Thaler ${ }^{\ddagger}$, and Michael Walfish ${ }^{\circ}$

*Stanford University
${ }^{\circ}$ New York University
${ }^{\dagger}$ Northeastern University
\ddagger Georgetown University

May 23 ${ }^{\text {rd }}, 2018$

zkSNARK

Argument A "proof"...

zkSNARK

Argument A "proof"...
of knowledge ... that you know a secret, and. . .

zkSNARK

Argument A "proof"...
of knowledge ... that you know a secret, and. . .

Zero knowledge ... it doesn't reveal the secret.

zkSNARK

Argument A "proof"...
of knowledge ... that you know a secret, and. . .

Zero knowledge . . . it doesn't reveal the secret.
Succinct It's short...

zkSNARK

Argument A "proof"...
of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn't reveal the secret.
Succinct It's short...

Non-interactive ... and it can be written down...

zkSNARK

Argument A "proof"...
of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn't reveal the secret.
Succinct It's short...

Non-interactive ... and it can be written down...
(Publicly verifiable) ...s so that anyone can check it.

zkSNARKs: Costs and desiderata

Proof size

zkSNARKs: Costs and desiderata

Proof size

Prover (\mathcal{P}) time

zkSNARKs: Costs and desiderata

Proof size

Prover (\mathcal{P}) time

Verifier (\mathcal{V}) time

zkSNARKs: Costs and desiderata

Proof size

Prover (\mathcal{P}) time

Verifier (\mathcal{V}) time
Cryptographic assumptions

zkSNARKs: Costs and desiderata

Proof size

Prover (\mathcal{P}) time

Verifier (\mathcal{V}) time
Cryptographic assumptions

Trusted setup?

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)
Proof size is sub-linear in $|\mathcal{C}|$ and $|w|$
Prover time is linear in $|\mathcal{C}|$
Verifier time is sublinear in $|\mathcal{C}|$ and $|w|$

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)
Proof size is sub-linear in $|\mathcal{C}|$ and $|w|$
Prover time is linear in $|\mathcal{C}|$
Verifier time is sublinear in $|\mathcal{C}|$ and $|w|$
Good constants: concrete costs are low

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)
Proof size is sub-linear in $|\mathcal{C}|$ and $|w|$
Prover time is linear in $|\mathcal{C}|$
Verifier time is sublinear in $|\mathcal{C}|$ and $|w|$
Good constants: concrete costs are low
Cryptographic assumptions: discrete log
No trusted setup

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)
\rightarrow We evaluate Hyrax and five other ZK systems.
We find that:

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)
\rightarrow We evaluate Hyrax and five other ZK systems.
We find that:
Hyrax's proofs are small:
to get smaller, you have to pay more computation.

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)
\rightarrow We evaluate Hyrax and five other ZK systems.
We find that:
Hyrax's proofs are small:
to get smaller, you have to pay more computation. Hyrax is fast: to get faster, you have to accept bigger proofs.

Our contributions

\rightarrow We design and implement Hyrax, a zkSNARK for "parallel" arithmetic circuit satisfiability:
for \mathcal{V} 's input $x, \exists w: \mathcal{C}(x, w)=1$ (and \mathcal{P} knows w)
\rightarrow We evaluate Hyrax and five other ZK systems.
We find that:
Hyrax's proofs are small:
to get smaller, you have to pay more computation. Hyrax is fast: to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space

Roadmap

1. General-purpose ZK proof systems
2. Hyrax at a high level
3. Evaluation

General-purpose ZK proof systems for NP

On input x, \mathcal{P} convinces \mathcal{V} that $\Phi(x, w)=1$ (for a witness w that \mathcal{P} knows)

General-purpose ZK proof systems for NP

On input x, \mathcal{P} convinces \mathcal{V} that $\Phi(x, w)=1$ (for a witness w that \mathcal{P} knows)

General-purpose ZK proof systems for NP

On input x, \mathcal{P} convinces \mathcal{V} that $\Phi(x, w)=1$ (for a witness w that \mathcal{P} knows)

General-purpose ZK proof systems for NP

On input x, \mathcal{P} convinces \mathcal{V} that $\Phi(x, w)=1$ (for a witness w that \mathcal{P} knows)

General-purpose ZK proof systems for NP

On input x, \mathcal{P} convinces \mathcal{V} that $\Phi(x, w)=1$ (for a witness w that \mathcal{P} knows)

General-purpose ZK proof systems for NP

On input x, \mathcal{P} convinces \mathcal{V} that $\Phi(x, w)=1$ (for a witness w that \mathcal{P} knows)

Existing systems use a wide range of proof machinery

 Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]- Pinocchio [PGHR13], libsnark [BCTV14]

	Short			Trusted	
	Proofs	Fast \mathcal{P}	Fast \mathcal{V}	setup?	Assumption
libsnark	\checkmark	X	\checkmark	X	Knowledge of exponent

Existing systems use a wide range of proof machinery

Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

	Short		Trusted		
	Proofs	Fast \mathcal{P}	Fast \mathcal{V}	setup?	Assumption
libsnark	\checkmark	x	\checkmark	x	Knowledge of exponent
Bulletproofs	\checkmark	x	x	\checkmark	discrete log

Existing systems use a wide range of proof machinery

Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation-in-the-head [IKOSO7]

- ZKBoo [GMO16], ZKB++ [CDGORRSZ17]

	Short									Trusted
	Proofs	Fast \mathcal{P}	Fast \mathcal{V}	setup?	Assumption					
libsnark	\checkmark	x	\checkmark	x	Knowledge of exponent					
Bulletproofs	\checkmark	x	x	\checkmark	discrete log					
ZKB++	x	\checkmark	$x($ ish $)$	\checkmark	collision-resistant hashes					

Existing systems use a wide range of proof machinery

Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation-in-the-head [IKOSO7]

- ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
- Ligero [AHIV17]

	Short			Trusted	
	Proofs	Fast \mathcal{P}	Fast \mathcal{V}	setup?	Assumption
libsnark	\checkmark	x	\checkmark	x	Knowledge of exponent
Bulletproofs	\checkmark	x	x	\checkmark	discrete log
ZKB++	X	\checkmark	$x($ ish $)$	\checkmark	collision-resistant hashes
Ligero	\checkmark (ish)	\checkmark	\mathcal{J} (ish)	\checkmark	collision-resistant hashes

Existing systems use a wide range of proof machinery Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation-in-the-head [IKOSO7]

- ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
- Ligero [AHIV17]

Short PCPs [Kil94,Mic00,BS08,BCN16,RRR16,BBC+17,BBHR17, ...]

- libSTARK [BBHR18]

	Short			Trusted	
	Proofs	Fast \mathcal{P}	Fast \mathcal{V}	setup?	Assumption
libsnark	\checkmark	x	\checkmark	x	Knowledge of exponent
Bulletproofs	\checkmark	x	x	\checkmark	discrete log
ZKB++	x	\checkmark	x (ish)	\checkmark	collision-resistant hashes
Ligero	\checkmark (ish)	\checkmark	\checkmark (ish)	\checkmark	collision-resistant hashes
libSTARK	\checkmark	x	\checkmark	\checkmark	Reed-Solomon conjecture

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level
3. Evaluation

Hyrax: a ZK argument from Interactive Proofs (IPs)
Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]

Hyrax: a ZK argument from Interactive Proofs (IPs)
Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]
We compile Hyrax's IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]...

Hyrax: a ZK argument from Interactive Proofs (IPs)
Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]
We compile Hyrax's IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]...
... plus refinements that result in multiple orders of magnitude savings in \mathcal{V} time and proof size.

Hyrax: a ZK argument from Interactive Proofs (IPs)
Hyrax builds on the interactive proofs of GKR/CMT [Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]

We compile Hyrax's IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]...
... plus refinements that result in multiple orders of magnitude savings in \mathcal{V} time and proof size.

High-level idea: Replace each of \mathcal{P} 's messages in the IP with a commitment to the message; \mathcal{V} runs checks "under the commitments."

Cryptographic commitments

Sender computes $C \leftarrow \operatorname{Com}(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message.

Cryptographic commitments

Sender computes $C \leftarrow \operatorname{Com}(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message.

In general, Com (m) has two important properties: Hiding: C reveals nothing about m.
Binding: Cannot produce $m^{\prime} \neq m$ s.t. $C=\operatorname{Com}\left(m^{\prime}\right)$

Cryptographic commitments (with a linear homomorphism) Sender computes $C \leftarrow \operatorname{Com}(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message.

In general, Com (m) has two important properties:
Hiding: C reveals nothing about m.
Binding: Cannot produce $m^{\prime} \neq m$ s.t. $C=\operatorname{Com}\left(m^{\prime}\right)$
We also require a linear homomorphism, \odot : given $C_{0} \leftarrow \operatorname{Com}\left(m_{0}\right), C_{1} \leftarrow \operatorname{Com}\left(m_{1}\right)$, we have

$$
\begin{aligned}
C_{0} \odot C_{1} & \triangleq \operatorname{Com}\left(m_{0}+m_{1}\right) \\
C_{1}^{k} & \triangleq C_{1} \odot \cdots \odot C_{1}=\operatorname{Com}\left(k \cdot m_{1}\right)
\end{aligned}
$$

The Pedersen commitment has this property.

GKR08: IP for arithmetic circuit evaluation (non-ZK)

Witness checker must be expressed as a layered AC.

GKR08: IP for arithmetic circuit evaluation (non-ZK)

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates, gets claim about inputs, which it can check

GKR08: IP for arithmetic circuit evaluation (with ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates, gets claim about inputs, which it can check

To make this protocol ZK, \mathcal{P} sends commitments to its messages [CD98].

GKR08: IP for arithmetic circuit evaluation (with ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates, gets claim about inputs, which it can check

In a ZK proof, AC inputs include w, so \mathcal{V} cannot check them directly!

Idea: use a polynomial commitment [KZG10]
\mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Idea: use a polynomial commitment [KZG10]

\mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \tilde{m} directly:

1. \mathcal{P} commits to \widetilde{m} at the start of the protocol

Idea: use a polynomial commitment [KZG10]

\mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \tilde{m} directly:

1. \mathcal{P} commits to \tilde{m} at the start of the protocol
2. \mathcal{P} and \mathcal{V} run the interactive proof

Idea: use a polynomial commitment [KZG10]

\mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly:

1. \mathcal{P} commits to \widetilde{m} at the start of the protocol
2. \mathcal{P} and \mathcal{V} run the interactive proof
3. \mathcal{P} evaluates $\widetilde{m}(\cdot)$ at a point of \mathcal{V} 's choosing. .

Idea: use a polynomial commitment [KZG10]

\mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly:

1. \mathcal{P} commits to \widetilde{m} at the start of the protocol
2. \mathcal{P} and \mathcal{V} run the interactive proof
3. \mathcal{P} evaluates $\widetilde{m}(\cdot)$ at a point of \mathcal{V} 's choosing. .
4. ... and proves consistency with initial commitment.

Idea: use a polynomial commitment [KZG10]
\mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly:

1. \mathcal{P} commits to \widetilde{m} at the start of the protocol
2. \mathcal{P} and \mathcal{V} run the interactive proof
3. \mathcal{P} evaluates $\widetilde{m}(\cdot)$ at a point of \mathcal{V} 's choosing. .
4. ... and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme tailored to multilinear ${ }^{\star}$ polynomials like \widetilde{m}
*multivariate, linear in each variable

A polynomial commitment for \widetilde{m}

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

\mathcal{V} can compute L and R from r, and

$$
T \triangleq\left[\begin{array}{cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
$$

A polynomial commitment for \widetilde{m}

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

\mathcal{V} can compute L and R from r, and

$$
T \triangleq\left[\begin{array}{cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
$$

Naive: \mathcal{P} sends commitments to each w_{i}

A polynomial commitment for \widetilde{m}

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

\mathcal{V} can compute L and R from r, and

$$
T \triangleq\left[\begin{array}{cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
$$

Naive: \mathcal{P} sends commitments to each w_{i}
X Proof size and \mathcal{V} time are both $\mathrm{O}(|w|)!$

A polynomial commitment for \widetilde{m}

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

\mathcal{V} can compute L and R from r, and

Better: \mathcal{P} sends a multi-commitment to each row:

$$
T_{0}=\operatorname{Com}\left(w_{0}, w_{\ell}, \ldots, w_{\ell^{2}-\ell}\right) \quad[\text { Gro09 }]
$$

A polynomial commitment for \widetilde{m}

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

\mathcal{V} can compute L and R from r, and

$$
T \triangleq\left[\begin{array}{cccc}
\left.\begin{array}{|cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & W_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
\end{array}\right]
$$

Better: \mathcal{P} sends a multi-commitment to each row:

$$
T_{0}=\operatorname{Com}\left(w_{0}, w_{\ell}, \ldots, w_{\ell^{2}-\ell}\right) \quad[\text { Gro09 }]
$$

Pedersen commitments: vector-wise homomorphism.

A polynomial commitment for \widetilde{m} (cont'd)

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

$$
T \triangleq\left[\begin{array}{cccc}
\left.\begin{array}{|cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
\end{array}\right]
$$

1. \mathcal{V} uses homomorphism to compute $\operatorname{Com}(L \cdot T)$.

A polynomial commitment for \widetilde{m} (cont'd)

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

1. \mathcal{V} uses homomorphism to compute $\operatorname{Com}(L \cdot T)$.
2. \mathcal{P} sends a commitment to an evaluation of $\widetilde{m}(r)$

A polynomial commitment for \widetilde{m} (cont'd)

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

$$
T \triangleq\left[\begin{array}{cccc}
\left.\left.\left.\begin{array}{|cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right] .\right] . \begin{array}{c}
\\
w_{\ell}
\end{array}\right]
\end{array}\right.
$$

1. \mathcal{V} uses homomorphism to compute $\operatorname{Com}(L \cdot T)$.
2. \mathcal{P} sends a commitment to an evaluation of $\widetilde{m}(r)$
3. \mathcal{P} uses a dot-product argument to convince \mathcal{V} that $\operatorname{Com}(\widetilde{m}(r))$ is consistent with R and $\operatorname{Com}(L \cdot T)$.

A polynomial commitment for \widetilde{m} (cont'd)

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])

A polynomial commitment for \widetilde{m} (cont'd)

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

$$
T \triangleq\left[\begin{array}{cccc}
\left.\begin{array}{|cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
\end{array}\right]
$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])
\mathcal{P} sends one commitment per row: $\mathrm{S}_{\mathcal{P}} \in \mathrm{O}(\sqrt{|w|})$

A polynomial commitment for \widetilde{m} (cont'd)

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

$$
T \triangleq\left[\begin{array}{cccc}
\left.\begin{array}{cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
\end{array}\right]
$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])
\mathcal{P} sends one commitment per row: $\mathrm{S}_{\mathcal{P}} \in \mathrm{O}(\sqrt{|w|})$
\mathcal{V}^{\prime} 's time is $\mathrm{O}(|R|+|L|): \mathrm{T}_{\mathcal{V}} \in \mathrm{O}(\sqrt{|w|})$

A polynomial commitment for \widetilde{m} (cont'd)

$$
\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}
$$

$$
T \triangleq\left[\begin{array}{cccc}
\left.\begin{array}{cccc}
w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\
w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^{2}-1}
\end{array}\right]
\end{array}\right]
$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])
\mathcal{P} sends one commitment per row: $\mathrm{S}_{\mathcal{P}} \in \mathrm{O}(\sqrt{|w|})$
\mathcal{V} 's time is $\mathrm{O}(|R|+|L|): \mathrm{T}_{\mathcal{V}} \in \mathrm{O}(\sqrt{|w|})$
Can choose $\mathrm{S}_{\mathcal{P}} \cdot \mathrm{T}_{\mathcal{V}} \in \mathrm{O}(|w|)$ s.t. $\mathrm{T}_{\mathcal{V}} \in \Omega(\sqrt{|w|})$

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
\rightarrow reduces proof size and \mathcal{V} time

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
\rightarrow reduces proof size and \mathcal{V} time

Redistribution layer
\rightarrow lets Hyrax extract parallelism from serial computations

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
\rightarrow reduces proof size and \mathcal{V} time

Redistribution layer
\rightarrow lets Hyrax extract parallelism from serial computations

Gir ${ }^{++}$IP: Giraffe [WJBsTWW17] plus a tweak [CFS17]
\rightarrow reduces proof size

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level
3. Evaluation

Evaluation overview

Baselines:

\triangleleft BCCGP-sqrt [BCCGP16]-re-implemented

- Bulletproofs [BBBPWM18]—re-implemented

■ ZKB++ [CDGORRSZ17]—ran authors' implementation

- Ligero [AHIV17]—ran authors' implementation ӊ libSTARK [BBHR18]—ran authors' implementation
- Hyrax- $1 / 3 — T$ has ℓ rows, ℓ^{2} columns
\star Hyrax-naive-no refinements

Evaluation overview

Baselines:

\triangleleft BCCGP-sqrt [BCCGP16]-re-implemented

- Bulletproofs [BBBPWM18]-re-implemented

■ ZKB++ [CDGORRSZ17]—ran authors' implementation

- Ligero [AHIV17]—ran authors' implementation ӊ libSTARK [BBHR18]—ran authors' implementation
- Hyrax- $1 / 3 — T$ has ℓ rows, ℓ^{2} columns
\star Hyrax-naive-no refinements

Parameters: ≈ 90-bit security (M191 elliptic curve)

Evaluation overview

```
Baselines:
BCCGP-sqrt [BCCGP16]-re-implemented
\Delta Bulletproofs [BBBPWM18]_re-implemented
\square ZKB++ [CDGORRSZ17]-ran authors' implementation
\diamond Ligero [AHIV17]—ran authors' implementation
\Re libSTARK [BBHR18]—ran authors' implementation
- Hyrax-1/3-T has \ell rows, }\mp@subsup{\ell}{}{2}\mathrm{ columns
\star Hyrax-naive-no refinements
```

Parameters: ≈ 90-bit security (M191 elliptic curve)
Benchmark: SHA-256 Merkle tree, varying number of leaves

Proof size

$\log _{2} M$, number of leaves in Merkle tree
\mathcal{P} time

$\log _{2} M$, number of leaves in Merkle tree

- - Hyrax- $1 / 3 \rightarrow$-Hyrax-naive \triangleleft-BCCGP-sqrt \rightarrow Bulletproofs \rightarrow-ZKB $++~ \neg-$ Ligero \rightarrow-libSTARK

\mathcal{V} time

$\log _{2} M$, number of leaves in Merkle tree

Recap

We design, implement, and evaluate Hyrax, a zkSNARK for "data-parallel" AC satisfiability

Recap

We design, implement, and evaluate Hyrax, a zkSNARK for "data-parallel" AC satisfiability
\checkmark Hyrax's proofs are small: to get smaller, you have to pay more computation.

Recap

We design, implement, and evaluate Hyrax, a zkSNARK for "data-parallel" AC satisfiability
\checkmark Hyrax's proofs are small:
to get smaller, you have to pay more computation.
\checkmark Hyrax is fast: to get faster, you have to accept bigger proofs.

Recap

We design, implement, and evaluate Hyrax, a zkSNARK for "data-parallel" AC satisfiability
\checkmark Hyrax's proofs are small:
to get smaller, you have to pay more computation.
\checkmark Hyrax is fast: to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

Recap

We design, implement, and evaluate Hyrax, a zkSNARK for "data-parallel" AC satisfiability
\checkmark Hyrax's proofs are small: to get smaller, you have to pay more computation.
\checkmark Hyrax is fast: to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!
https://hyrax.crypto.fyi
https://github.com/hyraxZK

