
Full accounting for verifiable outsourcing

Riad S. Wahby?, Ye Ji◦, Andrew J. Blumberg†, abhi shelat‡,
Justin ThalerM, Michael Walfish◦, and Thomas Wies◦

?Stanford University
◦New York University

†The University of Texas at Austin
‡Northeastern University
MGeorgetown University

November 2nd, 2017



Probabilistic proofs enable outsourcing

client server

program,
inputs

outputs

SBW11
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15
D-LFKP16
WHGsW16

NT16
ZGKPP17

. . .



Probabilistic proofs enable outsourcing

client server

program,
inputs

outputs
+ short proof

Approach: Server’s response includes short proof of correctness.

[Babai85, GMR85, BCC86, BFLS91, FGLSS91, ALMSS92, AS92, Kilian92, LFKN92,

Shamir92, Micali00, BG02, BS05, GOS06, BGHSV06, IKO07, GKR08, KR09, GGP10,

Groth10, GLR11, Lipmaa11, BCCT12, GGPR13, BCCT13, Thaler13, KRR14, . . . ]

SBW11
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15
D-LFKP16
WHGsW16

NT16
ZGKPP17

. . .



Probabilistic proofs enable outsourcing

client server

program,
inputs

outputs
+ short proof

Approach: Server’s response includes short proof of correctness.

[Babai85, GMR85, BCC86, BFLS91, FGLSS91, ALMSS92, AS92, Kilian92, LFKN92,

Shamir92, Micali00, BG02, BS05, GOS06, BGHSV06, IKO07, GKR08, KR09, GGP10,

Groth10, GLR11, Lipmaa11, BCCT12, GGPR13, BCCT13, Thaler13, KRR14, . . . ]

SBW11
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15
D-LFKP16
WHGsW16

NT16
ZGKPP17

. . .



Probabilistic proofs enable outsourcing

client server

program,
inputs

outputs
+ short proof

Goal: outsourcing should be less expensive
than just executing the computation

SBW11
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTV14a
BCTV14b

BCGGMTV14
FL14

KPPSST14
FTP14

WSRHBW15
BBFR15

CFHKNPZ15
CTV15

KZMQCPPsS15
D-LFKP16
WHGsW16

NT16
ZGKPP17

. . .



Do systems achieve this goal?

Verifier (V): can easily check proof (asymptotically)

Prover (P)

: has massive overhead (≈10,000,000×)

Precomputation

: proportional to computation size

How do systems handle these costs?

Precomputation: amortize over many instances

Prover: assume P is >108× cheaper than V



Do systems achieve this goal?

Verifier (V): can easily check proof (asymptotically)

Prover (P): has massive overhead (≈10,000,000×)

Precomputation

: proportional to computation size

How do systems handle these costs?

Precomputation: amortize over many instances

Prover: assume P is >108× cheaper than V



Do systems achieve this goal?

Verifier (V): can easily check proof (asymptotically)

Prover (P): has massive overhead (≈10,000,000×)

Precomputation: proportional to computation size

How do systems handle these costs?

Precomputation: amortize over many instances

Prover: assume P is >108× cheaper than V



Do systems achieve this goal?

Verifier (V): can easily check proof (asymptotically)

Prover (P): has massive overhead (≈10,000,000×)

Precomputation: proportional to computation size

How do systems handle these costs?

Precomputation: amortize over many instances

Prover: assume P is >108× cheaper than V



Do systems achieve this goal?

Verifier (V): can easily check proof (asymptotically)

Prover (P): has massive overhead (≈10,000,000×)

Precomputation: proportional to computation size

How do systems handle these costs?

Precomputation: amortize over many instances

Prover: assume P is >108× cheaper than V



Do systems achieve this goal?

Verifier (V): can easily check proof (asymptotically)

Prover (P): has massive overhead (≈10,000,000×)

Precomputation: proportional to computation size

How do systems handle these costs?

Precomputation: amortize over many instances

Prover: assume P is >108× cheaper than V



Our contribution

Giraffe: first system to consider all costs and win.

In Giraffe, P really is 108× cheaper than V!
(setting: building trustworthy hardware)

Giraffe extends Zebra [WHGsW, Oakland16] with:
• an asymptotically P-optimal proof protocol that improves

on prior work [Thaler, CRYPTO13]

• concrete improvements in V , P , and precomputation costs

• a compiler that generates optimized hardware designs
from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile
(. . . sometimes).



Our contribution

Giraffe: first system to consider all costs and win.

In Giraffe, P really is 108× cheaper than V!
(setting: building trustworthy hardware)

Giraffe extends Zebra [WHGsW, Oakland16] with:
• an asymptotically P-optimal proof protocol that improves

on prior work [Thaler, CRYPTO13]

• concrete improvements in V , P , and precomputation costs

• a compiler that generates optimized hardware designs
from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile
(. . . sometimes).



Our contribution

Giraffe: first system to consider all costs and win.

In Giraffe, P really is 108× cheaper than V!
(setting: building trustworthy hardware)

Giraffe extends Zebra [WHGsW, Oakland16] with:
• an asymptotically P-optimal proof protocol that improves

on prior work [Thaler, CRYPTO13]

• concrete improvements in V , P , and precomputation costs

• a compiler that generates optimized hardware designs
from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile
(. . . sometimes).



Our contribution

Giraffe: first system to consider all costs and win.

In Giraffe, P really is 108× cheaper than V!
(setting: building trustworthy hardware)

Giraffe extends Zebra [WHGsW, Oakland16] with:
• an asymptotically P-optimal proof protocol that improves

on prior work [Thaler, CRYPTO13]

• concrete improvements in V , P , and precomputation costs

• a compiler that generates optimized hardware designs
from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile

(. . . sometimes).



Our contribution

Giraffe: first system to consider all costs and win.

In Giraffe, P really is 108× cheaper than V!
(setting: building trustworthy hardware)

Giraffe extends Zebra [WHGsW, Oakland16] with:
• an asymptotically P-optimal proof protocol that improves

on prior work [Thaler, CRYPTO13]

• concrete improvements in V , P , and precomputation costs

• a compiler that generates optimized hardware designs
from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile
(. . . sometimes).



Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view

3. Evaluation



Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view

3. Evaluation



How can we build trustworthy hardware?

Firewall

e.g., a custom chip for network packet processing
whose manufacture we outsource to a third party

What if the chip’s manufacturer inserts a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.



Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a custom chip for network packet processing
whose manufacture we outsource to a third party

What if the chip’s manufacturer inserts a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)US DoD controls supply chain with trusted foundries.



Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a custom chip for network packet processing
whose manufacture we outsource to a third party

What if the chip’s manufacturer inserts a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.



Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a custom chip for network packet processing
whose manufacture we outsource to a third party

What if the chip’s manufacturer inserts a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)US DoD controls supply chain with trusted foundries.



Untrusted manufacturers can craft hardware Trojans

Firewall

e.g., a custom chip for network packet processing
whose manufacture we outsource to a third party

What if the chip’s manufacturer inserts a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.



Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., Oakland16;
Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

7 Only a few countries have cutting-edge, on-shore fabs

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

⇒ using an old fab entails an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Idea: outsource computations to untrusted chips



Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., Oakland16;
Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

7 Only a few countries have cutting-edge, on-shore fabs

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

⇒ using an old fab entails an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Idea: outsource computations to untrusted chips



Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., Oakland16;
Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

7 Only a few countries have cutting-edge, on-shore fabs

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

⇒ using an old fab entails an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Idea: outsource computations to untrusted chips



Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., Oakland16;
Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

7 Only a few countries have cutting-edge, on-shore fabs

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

⇒ using an old fab entails an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Idea: outsource computations to untrusted chips



Verifiable ASICs [WHGsW16]

Principal

F → designs
for P,V



Verifiable ASICs [WHGsW16]

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V



Verifiable ASICs [WHGsW16]

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

IntegratorV P



Verifiable ASICs [WHGsW16]

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

Integrator

V P
input

output



Verifiable ASICs [WHGsW16]

Untrusted
fab (fast)
builds P

Trusted
fab (slow)
builds V

Principal

F → designs
for P,V

Integrator

V P
x
y

proof that
y = F(x)

input

output



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view

3. Evaluation



Giraffe: a high-level view

program F
(subset of C)

V hardware
design

P hardware
design

w)

V P
x
y

proof that
y = F(x)

input

output



Giraffe: a high-level view

program F
(subset of C)

arithmetic
circuit

proof
protocol

front-end back-end

V hardware
design

P hardware
design

w)

V P
x
y

proof that
y = F(x)

input

output



Giraffe: a high-level view

program F
(subset of C)

arithmetic
circuit

proof
protocol

front-end

arithmetic circuit ⇐⇒ program
back-end

V hardware
design

P hardware
design

w)

V P
x
y

proof that
y = F(x)

input

output



Giraffe: a high-level view

program F
(subset of C)

arithmetic
circuit

proof
protocol

front-end

arithmetic circuit ⇐⇒ program
back-end

valid proof ⇐⇒ execution follows
arithmetic circuit, respects inputs

V hardware
design

P hardware
design

w)

V P
x
y

proof that
y = F(x)

input

output



Evolution of Giraffe’s back-end

GKR08 base protocol

CMT12 reduces P and precomp costs for all ckts

Thaler13 reduces precomp for structured circuits

Giraffe reduces P cost for structured circuits
(plus optimizations for V ; see paper)

Let’s take a high-level look at how these optimizations work.
(The following all use a nice simplification [Thaler15].)



Evolution of Giraffe’s back-end

GKR08 base protocol

CMT12 reduces P and precomp costs for all ckts

Thaler13 reduces precomp for structured circuits

Giraffe reduces P cost for structured circuits
(plus optimizations for V ; see paper)

Let’s take a high-level look at how these optimizations work.
(The following all use a nice simplification [Thaler15].)



Evolution of Giraffe’s back-end

GKR08 base protocol

CMT12 reduces P and precomp costs for all ckts

Thaler13 reduces precomp for structured circuits

Giraffe reduces P cost for structured circuits
(plus optimizations for V ; see paper)

Let’s take a high-level look at how these optimizations work.
(The following all use a nice simplification [Thaler15].)



Evolution of Giraffe’s back-end

GKR08 base protocol

CMT12 reduces P and precomp costs for all ckts

Thaler13 reduces precomp for structured circuits

Giraffe reduces P cost for structured circuits
(plus optimizations for V ; see paper)

Let’s take a high-level look at how these optimizations work.
(The following all use a nice simplification [Thaler15].)



Evolution of Giraffe’s back-end

GKR08 base protocol

CMT12 reduces P and precomp costs for all ckts

Thaler13 reduces precomp for structured circuits

Giraffe reduces P cost for structured circuits
(plus optimizations for V ; see paper)

Let’s take a high-level look at how these optimizations work.
(The following all use a nice simplification [Thaler15].)



GKR08: an IP for arithmetic circuit evaluation

F must be expressed as a
layered arithmetic circuit.

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

y

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: an IP for arithmetic circuit evaluation

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks



GKR08: polynomial-time P

d

G

For each layer, P and V engage in a sum-check protocol.

In the first round, P computes (q ∈ FlogG ):∑
h0∈{0,1}log G

∑
h1∈{0,1}log G

(
˜add(q, h0, h1)

(
Ṽ(h0) + Ṽ(h1)

)
+

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
))

This has 22 logG = G 2 terms. In total, P ’s work is O(poly(G )).

Precomputation is one evaluation
of ˜add and m̃ul, costing O(poly(G )).



GKR08: polynomial-time P

d

G

For each layer, P and V engage in a sum-check protocol.

In the first round, P computes (q ∈ FlogG ):∑
h0∈{0,1}log G

∑
h1∈{0,1}log G

(
˜add(q, h0, h1)

(
Ṽ(h0) + Ṽ(h1)

)
+

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
))

This has 22 logG = G 2 terms. In total, P ’s work is O(poly(G )).

Precomputation is one evaluation
of ˜add and m̃ul, costing O(poly(G )).



GKR08: polynomial-time P

d

G

For each layer, P and V engage in a sum-check protocol.

In the first round, P computes (q ∈ FlogG ):∑
h0∈{0,1}log G

∑
h1∈{0,1}log G

(
˜add(q, h0, h1)

(
Ṽ(h0) + Ṽ(h1)

)
+

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
))

This has 22 logG = G 2 terms. In total, P ’s work is O(poly(G )).

Precomputation is one evaluation
of ˜add and m̃ul, costing O(poly(G )).



GKR08: polynomial-time P

d

G

For each layer, P and V engage in a sum-check protocol.

In the first round, P computes (q ∈ FlogG ):∑
h0∈{0,1}log G

∑
h1∈{0,1}log G

(
˜add(q, h0, h1)

(
Ṽ(h0) + Ṽ(h1)

)
+

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
))

This has 22 logG = G 2 terms. In total, P ’s work is O(poly(G )).

Precomputation is one evaluation
of ˜add and m̃ul, costing O(poly(G )).



CMT12: from polynomial to quasilinear

d

G

add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1

3 3

2

2 3

3

This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h0) + Ṽ(h1)
)

+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
)

G terms/round for 2 logG rounds: P ’s work is O(G logG ).

Using a related trick, precomputing
˜add and m̃ul costs O(G ) in total.



CMT12: from polynomial to quasilinear

d

G

add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1

3 3

2

2 3

3

This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h0) + Ṽ(h1)
)

+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
)

G terms/round for 2 logG rounds: P ’s work is O(G logG ).

Using a related trick, precomputing
˜add and m̃ul costs O(G ) in total.



CMT12: from polynomial to quasilinear

d

G

add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1

3 3

2

2 3

3

This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h0) + Ṽ(h1)
)

+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
)

G terms/round for 2 logG rounds: P ’s work is O(G logG ).

Using a related trick, precomputing
˜add and m̃ul costs O(G ) in total.



CMT12: from polynomial to quasilinear

d

G

add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1

3 3

2

2 3

3

This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h0) + Ṽ(h1)
)

+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
)

G terms/round for 2 logG rounds: P ’s work is O(G logG ).

Using a related trick, precomputing
˜add and m̃ul costs O(G ) in total.



CMT12: from polynomial to quasilinear

d

G

add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1

3 3

2

2 3

3

This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h0) + Ṽ(h1)
)

+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
)

G terms/round for 2 logG rounds: P ’s work is O(G logG ).

Using a related trick, precomputing
˜add and m̃ul costs O(G ) in total.



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate, sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #0

3 3

2

2 3

3

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1
subckt #1

3 3

2

2 3

3

Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit, sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logN

In round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logN

In round 2, h′ ∈ {0, 1}logN−1

In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1

In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h′, h0) + Ṽ(h′, h1)
)

+

∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h′, h0) · Ṽ(h′, h1)
)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view

3. Evaluation



Implementation

Giraffe is an end-to-end hardware generator:

a hardware design template

given computation, chip parameters (technology, size, . . . ),
produces optimized hardware designs for P and V

a (subset of) C compiler

produces the representation used by the design template



Implementation

Giraffe is an end-to-end hardware generator:

a hardware design template
given computation, chip parameters (technology, size, . . . ),
produces optimized hardware designs for P and V

a (subset of) C compiler

produces the representation used by the design template



Implementation

Giraffe is an end-to-end hardware generator:

a hardware design template
given computation, chip parameters (technology, size, . . . ),
produces optimized hardware designs for P and V

a (subset of) C compiler
produces the representation used by the design template



Evaluation questions

How does Giraffe perform on real-world computations?

1. Curve25519 point multiplication

2. Image matching

Goal: total cost of V , P , and precomputation
should be less than building F on a trusted chip



Evaluation questions

How does Giraffe perform on real-world computations?

1. Curve25519 point multiplication

2. Image matching

Goal: total cost of V , P , and precomputation
should be less than building F on a trusted chip



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Application #1: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive, e.g., for ECDH



Application #1: Curve25519 point multiplication

Energy consumption, Joules

1 3 5 7 9 11 13 15
log2 N , number of copies of subcircuit

0.01

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe

Zebra



Application #2: Image matching

Image matching via Fast Fourier transform

C implementation, compiled by Giraffe’s front-end
to V and P hardware designs—no hand tweaking!



Application #2: Image matching

Energy consumption, Joules

3 5 7 9 11 13 15
log2 N , number of copies of subcircuit

0.01

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe



Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
https://www.pepper-project.org

https://giraffe.crypto.fyi
https://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
https://www.pepper-project.org

https://giraffe.crypto.fyi
https://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
https://www.pepper-project.org

https://giraffe.crypto.fyi
https://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
https://www.pepper-project.org

https://giraffe.crypto.fyi
https://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
https://www.pepper-project.org

https://giraffe.crypto.fyi
https://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
https://www.pepper-project.org

https://giraffe.crypto.fyi
https://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
https://www.pepper-project.org

https://giraffe.crypto.fyi
https://www.pepper-project.org

