Full accounting for verifiable outsourcing

Riad S. Wahby^, Ye Ji, Andrew J. Blumberg ${ }^{\dagger}$, abhi shelat ${ }^{\ddagger}$, Justin Thaler ${ }^{\triangle}$, Michael Walfish ${ }^{\circ}$, and Thomas Wies ${ }^{\circ}$

*Stanford University
${ }^{\circ}$ New York University
${ }^{\dagger}$ The University of Texas at Austin
${ }^{\ddagger}$ Northeastern University
${ }^{\Delta}$ Georgetown University

November 2 ${ }^{\text {nd }}, 2017$

Probabilistic proofs enable outsourcing

Probabilistic proofs enable outsourcing

Approach: Server's response includes short proof of correctness.
[Babai85, GMR85, BCC86, BFLS91, FGLSS91, ALMSS92, AS92, Kilian92, LFKN92, Shamir92, Micali00, BG02, BS05, GOS06, BGHSV06, IKO07, GKR08, KR09, GGP10, Groth10, GLR11, Lipmaa11, BCCT12, GGPR13, BCCT13, Thaler13, KRR14, ...]

Probabilistic proofs enable outsourcing

SBW11
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTV14a
BCTV14b

Approach: Server's response includes short proof of correctness.
[Babai85, GMR85, BCC86, BFLS91, FGLSS91, ALMSS92, AS92, Kilian92, LFKN92, Shamir92, Micali00, BG02, BS05, GOS06, BGHSV06, IKO07, GKR08, KR09, GGP10, Groth10, GLR11, Lipmaa11, BCCT12, GGPR13, BCCT13, Thaler13, KRR14, ...]

Probabilistic proofs enable outsourcing

Goal: outsourcing should be less expensive than just executing the computation

Do systems achieve this goal?

Verifier (\mathcal{V}) : can easily check proof (asymptotically)

Do systems achieve this goal?

Verifier (\mathcal{V}) : can easily check proof (asymptotically) Prover (\mathcal{P}) : has massive overhead $(\approx 10,000,000 \times)$

Do systems achieve this goal?

Verifier (\mathcal{V}) : can easily check proof (asymptotically) Prover (\mathcal{P}) : has massive overhead $(\approx 10,000,000 \times$)
Precomputation: proportional to computation size

Do systems achieve this goal?

Verifier (\mathcal{V}) : can easily check proof (asymptotically) Prover (\mathcal{P}) : has massive overhead $(\approx 10,000,000 \times$)
Precomputation: proportional to computation size

How do systems handle these costs?

Do systems achieve this goal?

Verifier (\mathcal{V}) : can easily check proof (asymptotically) Prover (\mathcal{P}) : has massive overhead $(\approx 10,000,000 \times$)
Precomputation: proportional to computation size

How do systems handle these costs?
Precomputation: amortize over many instances

Do systems achieve this goal?

Verifier (\mathcal{V}) : can easily check proof (asymptotically)
Prover (\mathcal{P}) : has massive overhead $(\approx 10,000,000 \times$)
Precomputation: proportional to computation size

How do systems handle these costs?
Precomputation: amortize over many instances
Prover: assume \mathcal{P} is $>10^{8} \times$ cheaper than \mathcal{V}

Our contribution

Giraffe: first system to consider all costs and win.

Our contribution

Giraffe: first system to consider all costs and win. In Giraffe, \mathcal{P} really is $10^{8} \times$ cheaper than \mathcal{V} !
(setting: building trustworthy hardware)

Our contribution

Giraffe: first system to consider all costs and win.
In Giraffe, \mathcal{P} really is $10^{8} \times$ cheaper than \mathcal{V} !
(setting: building trustworthy hardware)
Giraffe extends Zebra [WHGsW, Oakland16] with:

- an asymptotically \mathcal{P}-optimal proof protocol that improves on prior work [Thaler, CRYPTO13]
- concrete improvements in \mathcal{V}, \mathcal{P}, and precomputation costs
- a compiler that generates optimized hardware designs from a subset of C

Our contribution

Giraffe: first system to consider all costs and win.
In Giraffe, \mathcal{P} really is $10^{8} \times$ cheaper than \mathcal{V} !
(setting: building trustworthy hardware)
Giraffe extends Zebra [WHGsW, Oakland16] with:

- an asymptotically \mathcal{P}-optimal proof protocol that improves on prior work [Thaler, CRYPTO13]
- concrete improvements in \mathcal{V}, \mathcal{P}, and precomputation costs
- a compiler that generates optimized hardware designs from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile

Our contribution

Giraffe: first system to consider all costs and win.
In Giraffe, \mathcal{P} really is $10^{8} \times$ cheaper than \mathcal{V} !
(setting: building trustworthy hardware)
Giraffe extends Zebra [WHGsW, Oakland16] with:

- an asymptotically \mathcal{P}-optimal proof protocol that improves on prior work [Thaler, CRYPTO13]
- concrete improvements in \mathcal{V}, \mathcal{P}, and precomputation costs
- a compiler that generates optimized hardware designs from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile (... sometimes).

Roadmap

1. Verifiable ASICs
2. Giraffe: a high-level view
3. Evaluation

Roadmap

1. Verifiable ASICs
2. Giraffe: a high-level view
3. Evaluation

How can we build trustworthy hardware?

e.g., a custom chip for network packet processing whose manufacture we outsource to a third party

Untrusted manufacturers can craft hardware Trojans

What if the chip's manufacturer inserts a back door?

Untrusted manufacturers can craft hardware Trojans

What if the chip's manufacturer inserts a back door?
Threat: incorrect execution of the packet filter
(Other concerns, e.g., secret state, are important but orthogonal)

Untrusted manufacturers can craft hardware Trojans

What if the chip's manufacturer inserts a back door?

The Cybercrime Economy
Fake tech gear has infiltrated the U.S. government
by David Goldman @DavidGoldmanCNN
(L) November 8, 2012: 3:10 PM ET

Untrusted manufacturers can craft hardware Trojans

US DoD controls supply chain with trusted foundries.

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

Trusted fabs are the only way to get strong guarantees
For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:
X Only a few countries have cutting-edge, on-shore fabs
x Building a new fab takes $\$ \$ \$ \$ \$$, years of $R \& D$

Trusted fabs are the only way to get strong guarantees
For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:
x Only a few countries have cutting-edge, on-shore fabs
x Building a new fab takes $\$ \$ \$ \$ \$$, years of $R \& D$
x Semiconductor scaling: chip area and energy go with square and cube of transistor length ("critical dimension")
\Rightarrow using an old fab entails an enormous performance hit e.g., India's best on-shore fab is $10^{8} \times$ behind state of the art

Trusted fabs are the only way to get strong guarantees
For example, stealthy trojans can thwart post-fab detection [A2: Analog Malicious Hardware, Yang et al., Oakland16; Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:
x Only a few countries have cutting-edge, on-shore fabs
x Building a new fab takes $\$ \$ \$ \$ \$$, years of $R \& D$
x Semiconductor scaling: chip area and energy go with square and cube of transistor length ("critical dimension")
\Rightarrow using an old fab entails an enormous performance hit e.g., India's best on-shore fab is $10^{8} \times$ behind state of the art

Idea: outsource computations to untrusted chips

Verifiable ASICs [WHGsW16]

Principal
$\mathrm{F} \rightarrow$ designs
for \mathcal{P}, \mathcal{V}

Verifiable ASICs [WHGsW16]

Verifiable ASICs [WHGsW16]

Verifiable ASICs [WHGsW16]

Verifiable ASICs [WHGsW16]

Can Verifiable ASICs be practical?

VS.
F
\mathcal{V} overhead: checking proof is cheap

Can Verifiable ASICs be practical?

VS.

\mathcal{V} overhead: checking proof is cheap
\mathcal{P} overhead: high compared to cost of F...

Can Verifiable ASICs be practical?

VS.

\mathcal{V} overhead: checking proof is cheap
\mathcal{P} overhead: high compared to cost of F... ...but \mathcal{P} uses an advanced circuit technology

Can Verifiable ASICs be practical?

vs.
F
\mathcal{V} overhead: checking proof is cheap
\mathcal{P} overhead: high compared to cost of F ...
...but \mathcal{P} uses an advanced circuit technology

> Prior work: $\mathcal{V}+\mathcal{P}<\mathrm{F}$

Can Verifiable ASICs be practical?

vs.
F
\mathcal{V} overhead: checking proof is cheap
\mathcal{P} overhead: high compared to cost of Fbut \mathcal{P} uses an advanced circuit technology
Precomputation: proportional to cost of F

> Prior work:
> $\mathcal{V}+\mathcal{P}+$ Precomp $>\mathrm{F}$

Can Verifiable ASICs be practical?

vs.

$$
F
$$

\mathcal{V} overhead: checking proof is cheap
\mathcal{P} overhead: high compared to cost of Fbut \mathcal{P} uses an advanced circuit technology
Precomputation: proportional to cost of F
Prior work assumes this away

> Prior work:
> $\mathcal{V}+\mathcal{P}+$ Precomp $>\mathrm{F}$

Can Verifiable ASICs be practical?

vs.

$$
F
$$

\mathcal{V} overhead: checking proof is cheap
\mathcal{P} overhead: high compared to cost of Fbut \mathcal{P} uses an advanced circuit technology
Precomputation: proportional to cost of F
Prior work assumes this away

> Our goal:
> $\mathcal{V}+\mathcal{P}+$ Precomp $<\mathrm{F}$

Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view
3. Evaluation

Giraffe: a high-level view

Giraffe: a high-level view

Giraffe: a high-level view

Giraffe: a high-level view

Evolution of Giraffe's back-end

GKR08 base protocol

Evolution of Giraffe's back-end

GKR08 base protocol

CMT12 reduces \mathcal{P} and precomp costs for all ckts

Evolution of Giraffe's back-end

GKR08 base protocol

CMT12 reduces \mathcal{P} and precomp costs for all ckts

Thaler13 reduces precomp for structured circuits

Evolution of Giraffe's back-end

GKR08 base protocol
CMT12 reduces \mathcal{P} and precomp costs for all ckts
Thaler13 reduces precomp for structured circuits

Giraffe reduces \mathcal{P} cost for structured circuits (plus optimizations for \mathcal{V}; see paper)

Evolution of Giraffe's back-end

GKR08 base protocol
CMT12 reduces \mathcal{P} and precomp costs for all ckts
Thaler13 reduces precomp for structured circuits
Giraffe reduces \mathcal{P} cost for structured circuits (plus optimizations for \mathcal{V}; see paper)

Let's take a high-level look at how these optimizations work. (The following all use a nice simplification [Thaler15].)

GKR08: an IP for arithmetic circuit evaluation

F must be expressed as a layered arithmetic circuit.

GKR08: an IP for arithmetic circuit evaluation

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer

sum-check [LFKN90]

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates

GKR08: an IP for arithmetic circuit evaluation

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer's input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates, gets claim about inputs, which it can check

more sum-checks

g

GKR08: polynomial-time \mathcal{P}

For each layer, \mathcal{P} and \mathcal{V} engage in a sum-check protocol.

GKR08: polynomial-time \mathcal{P}

For each layer, \mathcal{P} and \mathcal{V} engage in a sum-check protocol. In the first round, \mathcal{P} computes $\left(q \in \mathbb{F}^{\log G}\right)$:

$$
\begin{aligned}
\sum_{h_{0} \in\{0,1\}^{\log G}} \sum_{h_{1} \in\{0,1\}^{\log G}} & \left(\operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right)+\tilde{V}\left(h_{1}\right)\right)+\right. \\
& \left.\tilde{\operatorname{mul}}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right) \cdot \tilde{V}\left(h_{1}\right)\right)\right)
\end{aligned}
$$

GKR08: polynomial-time \mathcal{P}

For each layer, \mathcal{P} and \mathcal{V} engage in a sum-check protocol. In the first round, \mathcal{P} computes $\left(q \in \mathbb{F}^{\log G}\right)$:

$$
\begin{aligned}
& \sum_{h_{0} \in\{0,1\}^{\log G}} \sum_{h_{1} \in\{0,1\}^{\log G}}\left(\operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right)+\tilde{V}\left(h_{1}\right)\right)+\right. \\
& \tilde{\left.\operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right) \cdot \tilde{V}\left(h_{1}\right)\right)\right)}
\end{aligned}
$$

This has $2^{2 \log G}=G^{2}$ terms. In total, \mathcal{P}^{\prime} s work is $\mathrm{O}(\operatorname{poly}(G))$.

GKR08: polynomial-time \mathcal{P}

For each layer, \mathcal{P} and \mathcal{V} engage in a sum-check protocol.
In the first round, \mathcal{P} computes $\left(q \in \mathbb{F}^{\log G}\right)$:

$$
\begin{aligned}
& \sum_{h_{0} \in\{0,1\}^{\log G}} \sum_{h_{1} \in\{0,1\}^{\log G}}\left(\operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right)+\tilde{V}\left(h_{1}\right)\right)+\right. \\
& \tilde{\left.\operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right) \cdot \tilde{V}\left(h_{1}\right)\right)\right)}
\end{aligned}
$$

This has $2^{2 \log G}=G^{2}$ terms. In total, \mathcal{P} 's work is $\mathrm{O}(\operatorname{poly}(G))$.

Precomputation is one evaluation of add and mul, costing $O(\operatorname{poly}(G))$.

CMT12: from polynomial to quasilinear

 $\operatorname{add}\left(g_{O}, g_{L}, g_{R}\right)=0$ except when g_{O} is + with inputs g_{L}, g_{R}

CMT12: from polynomial to quasilinear

$\operatorname{add}\left(g_{O}, g_{L}, g_{R}\right)=0$ except when g_{O} is + with inputs g_{L}, g_{R}

$\operatorname{add}(3,2,3)=1$, otherwise $\operatorname{add}(\cdots)=0$

CMT12: from polynomial to quasilinear

$\operatorname{add}\left(g_{O}, g_{L}, g_{R}\right)=0$ except when g_{O} is + with inputs g_{L}, g_{R}
This means we can rewrite \mathcal{P} 's sum in the first round as:

$$
\begin{aligned}
& \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h_{0}\right)+\tilde{\mathrm{V}}\left(h_{1}\right)\right)+ \\
& \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mul }}} \tilde{\operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h_{0}\right) \cdot \tilde{\mathrm{V}}\left(h_{1}\right)\right)}
\end{aligned}
$$

CMT12: from polynomial to quasilinear

$\operatorname{add}\left(g_{O}, g_{L}, g_{R}\right)=0$ except when g_{O} is + with inputs g_{L}, g_{R}
This means we can rewrite \mathcal{P} 's sum in the first round as:

$$
\begin{aligned}
& \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right)+\tilde{V}\left(h_{1}\right)\right)+ \\
& \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mul }}} \operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right) \cdot \tilde{V}\left(h_{1}\right)\right)
\end{aligned}
$$

G terms/round for $2 \log G$ rounds: \mathcal{P} 's work is $O(G \log G)$.

CMT12: from polynomial to quasilinear

$\operatorname{add}\left(g_{O}, g_{L}, g_{R}\right)=0$ except when g_{O} is + with inputs g_{L}, g_{R}
This means we can rewrite \mathcal{P} 's sum in the first round as:

$$
\begin{aligned}
& \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right)+\tilde{V}\left(h_{1}\right)\right)+ \\
& \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mul }}} \operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h_{0}\right) \cdot \tilde{V}\left(h_{1}\right)\right)
\end{aligned}
$$

G terms/round for $2 \log G$ rounds: \mathcal{P} 's work is $O(G \log G)$.

Using a related trick, precomputing ad̃d and mul costs $O(G)$ in total.

Thaler13: more structure, less precomputation

Idea: for a batch of identical subckts, ad̃d and mul can be "small."

Thaler13: more structure, less precomputation Idea: for a batch of identical subckts, ad̃d and mul can be "small."

subckt \#0

subckt \#1

$$
\operatorname{add}(3,2,3)=1 \text {, otherwise } \operatorname{add}(\cdots)=0
$$

Notice that ad̃d does not comprehend subcircuit number!

Thaler13: more structure, less precomputation

Idea: for a batch of identical subckts, ad̃d and mul can be "small."
\rightarrow Precomp costs $\mathrm{O}(G)$, amortized over N copies!

Thaler13: more structure, less precomputation

 Idea: for a batch of identical subckts, ad̃d and mul can be "small."\rightarrow Precomp costs $\mathrm{O}(G)$, amortized over N copies!
Now \mathcal{P}^{\prime} 's sum in the first round is $\left(q^{\prime} \in \mathbb{F}^{\log N}\right)$:

$$
\begin{aligned}
& \sum_{\left.0, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right) \sum_{\left.h^{\prime} \in\{0,1\}\right\}^{\log N}} \tilde{\text { eq }}\left(q^{\prime}, h^{\prime}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right)+\tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)+ \\
& \sum_{\left.\mathrm{o}_{0}\right) \in S_{\text {mul }}} \tilde{\operatorname{mul}\left(q, h_{0}, h_{1}\right) \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\text { eq }}\left(q^{\prime}, h^{\prime}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right) \cdot \tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)}
\end{aligned}
$$

N copies

Thaler13: more structure, less precomputation

 Idea: for a batch of identical subckts, ad̃d and mul can be "small."\rightarrow Precomp costs $\mathrm{O}(G)$, amortized over N copies!
Now \mathcal{P}^{\prime} 's sum in the first round is $\left(q^{\prime} \in \mathbb{F}^{\log N}\right)$:

Thaler13: more structure, less precomputation

 Idea: for a batch of identical subckts, add and mull can be "small."\rightarrow Precomp costs $\mathrm{O}(G)$, amortized over N copies!
Now \mathcal{P}^{\prime} s sum in the first round is ($q^{\prime} \in \mathbb{F}^{\log N}$):

For each gate,

$\longrightarrow \longrightarrow$

Thaler13: more structure, less precomputation

Idea: for a batch of identical subckts, add and mull can be "small."
\rightarrow Precomp costs $\mathrm{O}(G)$, amortized over N copies!
Now \mathcal{P} 's sum in the first round is $\left(q^{\prime} \in \mathbb{F}^{\log N}\right)$:

$$
\sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right) \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\mathrm{eq}}\left(q^{\prime}, h^{\prime}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right)+\tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)+
$$

$$
\sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mul }}} \tilde{m u l}\left(q, h_{0}, h_{1}\right) \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\mathrm{eq}}\left(q^{\prime}, h^{\prime}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right) \cdot \tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)
$$

For each gate, sum over each subcircuit.

Thaler13: more structure, less precomputation

 Idea: for a batch of identical subckts, ad̃d and mul can be "small."\rightarrow Precomp costs $\mathrm{O}(G)$, amortized over N copies!
Now \mathcal{P}^{\prime} 's sum in the first round is $\left(q^{\prime} \in \mathbb{F}^{\log N}\right)$:
$\sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right) \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\text { eq }}\left(q^{\prime}, h^{\prime}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right)+\tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)+$

$$
\sum_{\left.0, h_{1}\right) \in S_{\text {mul }}} \tilde{\operatorname{mul}}\left(q, h_{0}, h_{1}\right) \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\text { eq }}\left(q^{\prime}, h^{\prime}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right) \cdot \tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)
$$

$N G$ terms/round in first $2 \log G$ rounds: \mathcal{P} 's work is $\Omega(N G \log G)$.

\uparrow d \downarrow

$\leftleftarrows G \longrightarrow$

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

$$
\begin{aligned}
& \sum_{\in\{0,1\}^{\log N}} \tilde{\text { eq }}\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right)+\tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)+ \\
& \sum_{\in\{0,1\}^{\log N}} \tilde{\text { eq }}\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mul }}} \tilde{\operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right) \cdot \tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)}
\end{aligned}
$$

$H \longrightarrow 1$

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

$$
\sum_{\in\{0,1\}^{\log N}} \tilde{\mathrm{eq}}\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right)+\tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)+
$$

$$
\sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\mathrm{eq}}\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mul }}} \tilde{\left.\operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{V}\left(h^{\prime}, h_{0}\right) \cdot \tilde{V}\left(h^{\prime}, h_{1}\right)\right), ~\right) .}
$$

For each subcircuit,

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

$$
\begin{aligned}
& \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\mathrm{eq}}\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right)+\tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)+ \\
& \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\mathrm{eq}}\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mull }}} \tilde{\operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right) \cdot \tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)}
\end{aligned}
$$

For each subcircuit, sum over each gate.

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

\mathcal{P} does $\left(N+\frac{N}{2}+\frac{N}{4}+\ldots\right) G+2 G \log G=O(N G+G \log G)$ work.

$\leftleftarrows G \longrightarrow$
$\longleftarrow G \longrightarrow$

Giraffe: leveraging structure to reduce \mathcal{P} costs

Idea: arrange for copies to "collapse" during sum-check protocol.
Rewriting the prior sum and changing sumcheck order:

$$
\begin{aligned}
& \sum_{h^{\prime} \in\{0,1\}^{\log N}} \text { ẽq }\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {add }}} \operatorname{add}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right)+\tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right)+ \\
& \sum_{h^{\prime} \in\{0,1\}^{\log N}} \tilde{\text { eq }}\left(q^{\prime}, h^{\prime}\right) \sum_{\left(h_{0}, h_{1}\right) \in S_{\text {mul }}} \operatorname{mul}\left(q, h_{0}, h_{1}\right)\left(\tilde{\mathrm{V}}\left(h^{\prime}, h_{0}\right) \cdot \tilde{\mathrm{V}}\left(h^{\prime}, h_{1}\right)\right) \\
& \mathcal{P} \text { does }\left(N+\frac{N}{2}+\frac{N}{4}+\ldots\right) G+2 G \log G=O(N G+G \log G) \text { work. }
\end{aligned}
$$

\rightarrow Linear in size of computation when $N>\log G!$

Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view
3. Evaluation

Implementation

Giraffe is an end-to-end hardware generator:

Implementation

Giraffe is an end-to-end hardware generator:
a hardware design template given computation, chip parameters (technology, size, ...), produces optimized hardware designs for \mathcal{P} and \mathcal{V}

Implementation

Giraffe is an end-to-end hardware generator:
a hardware design template given computation, chip parameters (technology, size, ...), produces optimized hardware designs for \mathcal{P} and \mathcal{V}
a (subset of) C compiler produces the representation used by the design template

Evaluation questions

How does Giraffe perform on real-world computations?

1. Curve25519 point multiplication
2. Image matching

Evaluation questions

How does Giraffe perform on real-world computations?

1. Curve25519 point multiplication
2. Image matching

Goal: total cost of \mathcal{V}, \mathcal{P}, and precomputation should be less than building F on a trusted chip

Evaluation method

Baselines: Zebra; implementation of F in same technology as \mathcal{V}

Evaluation method

Baselines: Zebra; implementation of F in same technology as \mathcal{V}
Metric: total energy consumption

Evaluation method

VS.
F

Baselines: Zebra; implementation of F in same technology as \mathcal{V}
Metric: total energy consumption
Measurements: based on circuit synthesis and simulation, published chip designs, and CMOS scaling models

Charge for \mathcal{V}, \mathcal{P}, communication; precomputation; PRNG

Evaluation method

VS.

F

Baselines: Zebra; implementation of F in camotarhnnlamiv ac IV
Metric: total energy consumpti
Measurements: based on circuit published chip designs, and CM

350 nm: 1997 (Pentium II)
$7 \mathrm{~nm}: \approx 2018$
≈ 20 year gap between trusted and untrusted fab

Charge for \mathcal{V}, \mathcal{P}, communication; precomputation; PRI
Constraints: trusted fab $=350 \mathrm{~nm}$; untrusted fab $=7 \mathrm{~nm}$ $200 \mathrm{~mm}^{2}$ max chip area; 150 W max total power

Application $\# 1$: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive, e.g., for ECDH

Application \#1: Curve25519 point multiplication
Energy consumption, Joules

Application \#2: Image matching

Image matching via Fast Fourier transform

C implementation, compiled by Giraffe's front-end to \mathcal{V} and \mathcal{P} hardware designs-no hand tweaking!

Application \#2: Image matching
Energy consumption, Joules

Recap: is it practical?

Recap: is it practical?

x Giraffe is restricted to batched computations

Recap: is it practical?

X Giraffe is restricted to batched computations

Giraffe's front-end includes two static analysis passes:
Slicing extracts only the parts of programs that can be efficiently outsourced
Squashing extracts batch-parallelism from serial computations

Recap: is it practical?

X Giraffe is restricted to batched computations
\checkmark Giraffe's proof protcol and optimizations save orders of magnitude compared to prior work

Recap: is it practical?

X Giraffe is restricted to batched computations
\checkmark Giraffe's proof protcol and optimizations save orders of magnitude compared to prior work
\checkmark Giraffe is the first system in the literature to account for all costs-and win.

Recap: is it practical?

x Giraffe is restricted to batched computations
\checkmark Giraffe's proof protcol and optimizations save orders of magnitude compared to prior work
\checkmark Giraffe is the first system in the literature to account for all costs-and win.

Giraffe is a step, but much work remains!

Recap: is it practical?

X Giraffe is restricted to batched computations
\checkmark Giraffe's proof protcol and optimizations save orders of magnitude compared to prior work
\checkmark Giraffe is the first system in the literature to account for all costs-and win.

Giraffe is a step, but much work remains!
https://giraffe.crypto.fyi https://www.pepper-project.org

