
Taking proof-based
verified computation a few
steps closer to practicality

Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun,
Andrew J. Blumberg, and Michael Walfish

The University of Texas at Austin

output, auxiliary information

 process_image (input)

use auxiliary
information

to quickly verify

client server

Probabilistically checkable proofs (PCPs) can help

Fast verification: client saves work (asymptotically)

General-purpose: can outsource any computation

Unconditional: no assumptions about the server

output

 process_image (input)

responses:

queries to the proof
, 1 , ...0

1 1

proof
0

accept/
reject

client server

The theory provides strong security properties,
but the costs are outrageous

• Verifying multiplication of 500×500 matrices would take
more than 500 trillion CPU years (seriously)

• Two efforts: PEPPER [HotOS11, NDSS12], Thaler et al.
[ITCS12, HotCloud12]

• In some cases, PEPPER reduces costs by a factor of 1020

over a naive implementation of the theory

There is a lot of renewed interest in reducing
costs with built systems

But all of these recent works have notable
limitations

1. The client has to outsource large computations to
offset verification costs

2. Their model of computation is arithmetic circuits

Example:

Arithmetic circuits cannot concisely express conditional
control flow or comparisons

X

X
+

2
5

4
3 12

10
22

output

GINGER addresses some of these limitations

Reduces the client’s checking work and network costs by
several orders of magnitude

Includes a massively parallel GPU-based implementation

Supports a general-purpose programming model

Concise conditionals, comparisons, efficient floating-
point representation, etc.

A compiler to go from high-level code to executables

The main takeaway

GINGER and its predecessor (PEPPER) together reduce costs
by a factor of 1020 using theory and systems techniques

We still need a factor of ≈103 on the server for true
practicality

We think that proof-based verified computation could be
practical in the near future

Rest of this talk

Design of GINGER

Experimental results

Theory that GINGER builds on

circuit, input

output 01 1

proof
queries to the proof

19responses:

client server

, ...,

X

X
+

accept/
reject

client’s tests

The server creates a proof by redundantly
encoding the circuit’s wire values

proof

X

X
+

2
5

4
3 12

10

22

output

circuit for the
computation

values on
wires of the

circuit

redundant
encoding

2
5
10
4
3
12
22

2
1
0
4
9

22
44

4

circuit, input

output 01 1

proof
queries to the proof

19responses:

client server

, ...,

X

X
+

accept/
reject

client’s tests

The client queries the server’s proof and runs a
set of tests

proof at
the server

2
1
0
4
9

22
44

4

responses:

queries to the proof
, 9 , ...0

tests at the client

1. consistency test
2. linearity test
3. quadratic corr. test
4. circuit test

accept/
reject

circuit, input

output 01 1

proof
queries to the proof

19responses:

client server

, ...,

X

X
+

accept/
reject

client’s tests

There is some probability that the client accepts an
incorrect proof

The costs depend on the size of the circuit

GINGER’s contributions include:

Reducing the costs by revisiting the client’s tests

Broadening the space of computations

Incorporating primitive floating-point numbers (in the
paper)

Reducing the costs by revisiting the client’s tests

1. consistency test
2. linearity test
3. quadratic corr. test
4. circuit test

responses:

queries to the proof
, 1 , ...0

server

Modifications:

Trade off more queries that are cheap for fewer of a
more expensive type

Reuse queries across tests, and compress queries

Benefit: savings in client’s checking costs and network costs

client’s tests

GINGER’s contributions include:

✓ Reducing the costs by revisiting the client’s tests

Broadening the space of computations

Incorporating primitive floating-point numbers (in the
paper)

We change the model of computation from arithmetic
circuits to systems of equations

The new model can represent general-purpose
programming constructs concisely

End-to-end costs decrease by many orders of magnitude

An example

increment(X)
 Y = X + 1

If the output is 7

There is a solution

If the output is 8

There is no solution

0 = X - <input>
0 = Y - (X + 1)
0 = Y - <output>

Once the inputs are fixed, an incorrect output will
result in an inconsistent system of equations

Suppose the input is 6

0 = X - 6
0 = Y - (X + 1)
0 = Y - 7

0 = X - 6
0 = Y - (X + 1)
0 = Y - 8

=

We can encode many program constructs

For example, consider “X != Y”:

Our equation is 1 = (X - Y) * M

Observe: no solution if X = = Y

Another example with conditional control flow

0 = X - M

Y = M * 3 + (1-M) * 4

function(bool X)
 if (X)
 Y = 3
 else
 Y = 4

=

Compiling code into a system of equations

compiler based
on Fairplay

[Malkhi et al.
USENIX

Security04]

function(bool X)
 if (X)
 Y = 3
 else
 Y = 4

0 = X - M

Y = M * 3 + (1-M) * 4

equations for <, >, !=, IF/ELSE, ...

(in the paper)

The server creates a proof by redundantly
encoding a solution to the system of equations

proof

X

X
+

2
5

4
3 12

10

22

output

circuit for the
computation

values on
wires of the

circuit

redundant
encoding

2
5
10
4
3
12
22

2
1
0
4
9

22
44

40 = X1 - 2
0 = X2 - 5
0 = X3 - (X1 * X2)
....
0 = Y - 22

solution to
the system of

equations

GINGER’s contributions include:

✓ Reducing the costs by revisiting the client’s tests

✓ Broadening the space of computations

Incorporating primitive floating-point numbers (in the
paper)

Implementation and experimental testbed

Massively parallel implementation

C++ code with OpenMP threads; HTTP/Open MPI to
distribute server’s work

CUDA to offload work to GPUs

Evaluation testbed

A cluster at Texas Advanced Computing Center (TACC)

Each machine runs Linux on an Intel Xeon 2.53 GHz with
48GB of RAM.

For GPU experiments, we use NVIDIA Tesla M2070 GPUs
(448 CUDA cores and 6GB of memory)

Evaluation questions

1. What are the break-even points under GINGER?

2. What is the result of parallelizing the server?

3. What are the savings from using systems of
equations as opposed to circuits?

instances

CPU time

computation costs

verification costs

break-even
point

The break-even points decrease significantly

Consider outsourcing many instances of 400×400 matrix
multiplication

PEPPER GINGER

CPU break-even # instances 4500 1800

CPU client verification time 5.3 hours 2.1 hours

GPU for crypto break-even # instances 3600 1300

GPU for crypto client verification time 4.3 hours 1.5 hours

Evaluation questions

1. What are the break-even points under GINGER?

2. What is the result of parallelizing the server?

3. What are the savings from using systems of
equations as opposed to circuits?

instances

CPU time

computation costs

verification costs
break-even

point

0

15

30

45

60

matrix mult polynomial eval Hamming distance root finding

sp
ee

du
p

Parallelizing the server results in a near-linear
speedup in most cases

1
co

re
4

co
re

s

60
 c

or
es

60
 c

or
es

(id

ea
l)

1
co

re
4

co
re

s

60
 c

or
es

60
 c

or
es

(id

ea
l)

1
co

re
4

co
re

s

60
 c

or
es

60
 c

or
es

(id

ea
l)

1
co

re
4

co
re

s

60
 c

or
es

60
 c

or
es

(id

ea
l)

Evaluation questions

1. What are the break-even points under GINGER?

2. What is the result of parallelizing the server?

3. What are the savings from using systems of
equations as opposed to circuits?

instances

CPU time

computation costs

verification costs
break-even

point

GINGER’s representation is many orders of
magnitude shorter compared to Boolean circuits

Benchmark

gates in
Boolean
circuit

variables in
GINGER’s

representation

root finding via bisection 2 × 103

Hamming distance 2 × 104

3 × 108

106

Rest of this talk

✓ Design of GINGER

✓ Experimental results

Limitations, related work, and outlook

Limitations of GINGER

The client needs to outsource many instances to gain

The server’s resource costs are still high

Also, the efficiency of the server sometimes relies on
reducing the redundancy in the proof’s encoding

The number of iterations in a loop should be known at
compile time

Prior work on verifying computations

Make strong trust assumptions or give up being general-purpose:

Replication [Castro & Liskov TOCS02], trusted hardware [Chiesa & Tromer ICS10,

Sadeghi et al. TRUST10], and auditing [Monrose et al. NDSS99, Haeberlen et al. SOSP07]

Special-purpose [Freivalds MFCS79, Golle & Mironov RSA01, Sion VLDB05, Benabbas et al.
CRYPTO11, Boneh & Freeman EUROCRYPT11]

Use fully homomorphic encryption [Gennaro et al. CRYPTO10, Chung et al.
CRYPTO10]

Proof-based verified computation [Ben-Or STOC88, Babai STOC91, Kilian STOC92,
Blum et al. JACM95, Arora et al. JACM98, Ben-Sasson et al. 12, Gennaro et al. 12]

Built systems:

Toward practical interactive proofs [Cormode ITCS12, Thaler et al. HotCloud12]

based on [Goldwasser et al. STOC08]

Our prior work: PEPPER [HotOS11, NDSS12] based on [Ishai et al. CCC07]

Summary of GINGER

Reduces the client’s checking work and network costs by
several orders of magnitude

Includes a massively parallel GPU-based implementation

Supports a general-purpose programming model

Looking back

About two years ago, we set out to build a system for
proof-based verified computation

Then, the estimated costs were on the order of trillions of
CPU years

Main takeaway

We combined theory and systems techniques to reduce
costs by a factor of 1020

We still need a factor of ≈103 on the server for true
practicality

But we think that proof-based verified computation could
be practical for real in the near future

