
Efficient RAM and control flow in
verifiable outsourced computation

Riad S. Wahby?, Srinath Setty†‡, Zuocheng Ren†,
Andrew J. Blumberg†, and Michael Walfish?

?New York University
†The University of Texas at Austin

‡now at Microsoft Research

February 10, 2015



Proof-based verifiable computation enables outsourcing

client server

program,
inputs

outputs

Goal: A client wants to outsource a computation

• with strong correctness guarantees, and

• without assumptions about the server’s hardware
or how failures might occur.



Proof-based verifiable computation enables outsourcing

client server

program,
inputs

outputs
+ short proof

Approach: Server’s response includes short proof of correctness.

This solution is based on powerful theoretical tools.
[GMR85, BCC88, BFLS91, ALMSS92, AS92, Kilian92, LFKN92,
Shamir92, Micali00, BS05, BGHSV06, IKO07, GKR08]



Related work in proof-based verification

applicable computations
setup
costs

regular
structure straight line pure stateful

general
control flow

none
Thaler, CMT, TRMP
[CRYPTO13, ITCS12,

HotCloud12]

low
Allspice

[IEEE S&P13]

med
Pepper

[NDSS12]
Ginger

[Security12]

Zaatar
[Eurosys13],
Pinocchio

[IEEE S&P13]

Pantry
[SOSP13]

high

BCTV,
BCGTV

[Security14,
CRYPTO13]

bet
te

r

Buffet
(this work)



Related work in proof-based verification

applicable computations
setup
costs

regular
structure straight line pure stateful

general
control flow

none
Thaler, CMT, TRMP
[CRYPTO13, ITCS12,

HotCloud12]

low
Allspice

[IEEE S&P13]

med
Pepper

[NDSS12]
Ginger

[Security12]

Zaatar
[Eurosys13],
Pinocchio

[IEEE S&P13]

Pantry
[SOSP13]

high

BCTV,
BCGTV

[Security14,
CRYPTO13]

bet
te

r

Buffet
(this work)



Related work in proof-based verification

applicable computations
setup
costs

regular
structure straight line pure stateful

general
control flow

none
Thaler, CMT, TRMP
[CRYPTO13, ITCS12,

HotCloud12]

low
Allspice

[IEEE S&P13]

med
Pepper

[NDSS12]
Ginger

[Security12]

Zaatar
[Eurosys13],
Pinocchio

[IEEE S&P13]

Pantry
[SOSP13]

high

BCTV,
BCGTV

[Security14,
CRYPTO13]

bet
te

r

Buffet
(this work)



Related work in proof-based verification

applicable computations
setup
costs

regular
structure straight line pure stateful

general
control flow

none
Thaler, CMT, TRMP
[CRYPTO13, ITCS12,

HotCloud12]

low
Allspice

[IEEE S&P13]

med
Pepper

[NDSS12]
Ginger

[Security12]

Zaatar
[Eurosys13],
Pinocchio

[IEEE S&P13]

Pantry
[SOSP13]

high

BCTV,
BCGTV

[Security14,
CRYPTO13]

bet
te

r

Buffet
(this work)



Verifiable computation still faces challenges

Buffet
(this work)

Tension between expressiveness and efficiency
Substantially

mitigated

Large (amortized) setup costs for the client;
massive server overhead

Not addressed



The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results



The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results



Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

program
(subset of C)

client
executable

client
executable

server
executable

server
executable

inputs

outputs,
proof



Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

program
(subset of C)

arithmetic
circuit

theoretical
tools

(e.g., PCPs)

front-end back-end

client
executable

client
executable

server
executable

server
executable

inputs

outputs,
proof



Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

program
(subset of C)

arithmetic
circuit

theoretical
tools

(e.g., PCPs)

front-end

arithmetic circuit ⇐⇒ program
back-end

client
executable

client
executable

server
executable

server
executable

inputs

outputs,
proof



Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

program
(subset of C)

arithmetic
circuit

theoretical
tools

(e.g., PCPs)

front-end

arithmetic circuit ⇐⇒ program
back-end

valid proof =⇒ execution follows
arithmetic circuit, respects inputs

client
executable

client
executable

server
executable

server
executable

inputs

outputs,
proof



Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

program
(subset of C)

arithmetic
circuit

theoretical
tools

(e.g., PCPs)

front-end

arithmetic circuit ⇐⇒ program
back-end

valid proof =⇒ execution follows
arithmetic circuit, respects inputs

client
executable

server
executable

Costs scale with arithmetic circuit size. So:

How can Buffet’s front-end efficiently represent
general-purpose C programs in arithmetic circuits?



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

i = i + 1; =⇒ i1 = i0 + 1;



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

if (i > 5)
i = i + 1;

else
i = i * 2;

=⇒

i1 = i0 + 1;
i2 = i0 * 2;
i3 = (i0 > 5) ?

i1 : i2;



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

i=0;
for (j=0; j<10; j++) {

i++;
}

=⇒

i = 0;
i0=i+1; // j == 0
i1=i0+1; // j == 1
· · ·
i9=i8+1; // j == 9



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

Buffet’s key challenge: how can we support general C programs
with arbitrary control flow, including break, continue, and data
dependent looping?

Buffet also adapts and refines a previous approach to verified
RAM [BCGT12, BCGTV13, BCTV14] (see paper).



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

Buffet’s key challenge: how can we support general C programs
with arbitrary control flow, including break, continue, and data
dependent looping?

Buffet also adapts and refines a previous approach to verified
RAM [BCGT12, BCGTV13, BCTV14] (see paper).



The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results



Compiling nested loops

In a loop nest, inner loop unrolls into every iteration of outer loop.

i=0;
for (j=0; j<10; j++) {

i++;
for (k=0; k<2; k++) {

i=i*2;
}

}

=⇒

i = 0;
i0=i+1; // j == 0
i1=i0*2; // k == 0
i2=i1*2; // k == 1
i3=i2+1; // j == 1
i4=i3*2; // k == 0
i5=i4*2; // k == 1
· · ·



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Read (inchar,length) pair.

1



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Read (inchar,length) pair.
2. Emit inchar, length times.

1

2



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do { /* bound= ??? */
output[j++] = inchar;
length--;

} while (length > 0);
}

At one extreme, a single character’s run length could be OUTLENGTH.
so this must be the inner bound.



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do { /* bound=OUTLENGTH */
output[j++] = inchar;
length--;

} while (length > 0);
}



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) { /* bound= ??? */

inchar = input[i++];
length = input[i++];

do { /* bound=OUTLENGTH */
output[j++] = inchar;
length--;

} while (length > 0);
}

At the other extreme, every character’s run length could be 1,
and the outer loop would iterate OUTLENGTH times.



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) { /* bound=OUTLENGTH */

inchar = input[i++];
length = input[i++];

do { /* bound=OUTLENGTH */
output[j++] = inchar;
length--;

} while (length > 0);
}

But: this code executes OUTLENGTH2 inner loop iterations,
and the resulting arithmetic circuit is quadratic in OUTLENGTH.



We can’t eliminate unrolling. What about nesting?

Consider:

1. Loop nests are equivalent to finite state machines.

2. Arithmetic circuits can efficiently represent FSMs.

Idea: transform loop nests into FSMs.



We can’t eliminate unrolling. What about nesting?

Consider:

1. Loop nests are equivalent to finite state machines.

2. Arithmetic circuits can efficiently represent FSMs.

Idea: transform loop nests into FSMs.



We can’t eliminate unrolling. What about nesting?

Consider:

1. Loop nests are equivalent to finite state machines.

2. Arithmetic circuits can efficiently represent FSMs.

Idea: transform loop nests into FSMs.



FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2
length > 0

length <= 0



FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Identify vertices: straight line code segments.

2. Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2

length > 0

length <= 0



FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.

1 transitions to 2 unconditionally.

2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2

length > 0

length <= 0



FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.

2 transitions to 1 when length <= 0.

1

2
length > 0

length <= 0



FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.

1

2
length > 0

length <= 0



FSM Transformation: step 2

From the control flow graph

, we can build a state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

i = j = 0;
state = 1;
while (j < OUTLENGTH) {

if (state == 1) {
inchar = input[i++];
length = input[i++];
state = 2;

}
if (state == 2) {

output[j++] = inchar;
length--;
if (length <= 0) {

state = 1;
}

}
}

1

2
length > 0

length <= 0



FSM Transformation: step 2

From the control flow graph, we can build a state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

i = j = 0;
state = 1;
while (j < OUTLENGTH) {

if (state == 1) {
inchar = input[i++];
length = input[i++];
state = 2;

}
if (state == 2) {

output[j++] = inchar;
length--;
if (length <= 0) {

state = 1;
}

}
}

1

2
length > 0

length <= 0



FSM Transformation: step 2

From the control flow graph, we can build a state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

i = j = 0;
state = 1;
while (j < OUTLENGTH) {

if (state == 1) {
inchar = input[i++];
length = input[i++];
state = 2;

}
if (state == 2) {

output[j++] = inchar;
length--;
if (length <= 0) {

state = 1;
}

}
}



Buffet’s FSM transformation: loop flattening

Buffet’s transformation extends loop flattening [Ghuloum & Fisher,
PPOPP95] with support for arbitrary loops, break, and continue.

Caveats:

• Programmer must tell Buffet # of steps to unroll the FSM.

• No goto in Buffet’s implementation (yet).

• No “program memory” ⇒ no function pointers.



Buffet’s FSM transformation: loop flattening

Buffet’s transformation extends loop flattening [Ghuloum & Fisher,
PPOPP95] with support for arbitrary loops, break, and continue.

Caveats:

• Programmer must tell Buffet # of steps to unroll the FSM.

• No goto in Buffet’s implementation (yet).

• No “program memory” ⇒ no function pointers.



What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter.
What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition

, and unroll it.

fetch-decode-
execute

step 1

CPU state:
pc, regs, . . .

fetch-decode-
execute step 2

CPU state:
pc, regs, . . .

· · ·

fetch-decode-
execute step T

CPU state:
pc, regs, . . .

BCTV supports all of C, but like other systems requires bounded
execution (programmer chooses # of CPU steps).

But: BCTV pays the cost of an entire CPU for each program step.



What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter.
What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition

, and unroll it.

fetch-decode-
execute

step 1

CPU state:
pc, regs, . . .

fetch-decode-
execute step 2

CPU state:
pc, regs, . . .

· · ·

fetch-decode-
execute step T

CPU state:
pc, regs, . . .

BCTV supports all of C, but like other systems requires bounded
execution (programmer chooses # of CPU steps).

But: BCTV pays the cost of an entire CPU for each program step.



What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter.
What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition, and unroll it.

fetch-decode-
execute step 1

CPU state:
pc, regs, . . .

fetch-decode-
execute step 2

CPU state:
pc, regs, . . .

· · ·

fetch-decode-
execute step T

CPU state:
pc, regs, . . .

BCTV supports all of C, but like other systems requires bounded
execution (programmer chooses # of CPU steps).

But: BCTV pays the cost of an entire CPU for each program step.



What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter.
What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition, and unroll it.

fetch-decode-
execute step 1

CPU state:
pc, regs, . . .

fetch-decode-
execute step 2

CPU state:
pc, regs, . . .

· · ·

fetch-decode-
execute step T

CPU state:
pc, regs, . . .

BCTV supports all of C, but like other systems requires bounded
execution (programmer chooses # of CPU steps).

But: BCTV pays the cost of an entire CPU for each program step.



What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter.
What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition, and unroll it.

fetch-decode-
execute step 1

CPU state:
pc, regs, . . .

fetch-decode-
execute step 2

CPU state:
pc, regs, . . .

· · ·

fetch-decode-
execute step T

CPU state:
pc, regs, . . .

BCTV supports all of C, but like other systems requires bounded
execution (programmer chooses # of CPU steps).

But: BCTV pays the cost of an entire CPU for each program step.



The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results



Evaluation questions

program
(subset of C)

arithmetic
circuit

theoretical
tools

(e.g., PCPs)

front-end

arithmetic circuit ⇐⇒ program
back-end

valid proof =⇒ execution follows
arithmetic circuit, respects inputs

client
executable

server
executable



Evaluation questions

Using the same back-end for Pantry, BCTV, and Buffet, how do the
front-ends compare?

1. For a fixed arithmetic circuit size, what is the maximum
computation size each system can handle?

2. For a fixed computation size, what is the server’s cost under
each system?



Evaluation questions

Using the same back-end for Pantry, BCTV, and Buffet, how do the
front-ends compare?

1. For a fixed arithmetic circuit size, what is the maximum
computation size each system can handle?

2. For a fixed computation size, what is the server’s cost under
each system?



Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.

For evaluation, we reimplemented the BCTV system, including

• a toolchain for the simulated CPU in Java and C

• a CPU simulator in C, compiled using Pantry

Our implementation’s performance is within 15% of BCTV.

We use the Pinocchio back-end [Parno et al., IEEE S&P13].
(Highly optimized implementation from BCTV [Security14].)

Evaluation platform:

• Texas Advanced Computing Center (TACC), Stampede cluster

• Linux machines with Intel Xeon E5-2680, 32 GB of RAM



Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.

For evaluation, we reimplemented the BCTV system, including

• a toolchain for the simulated CPU in Java and C

• a CPU simulator in C, compiled using Pantry

Our implementation’s performance is within 15% of BCTV.

We use the Pinocchio back-end [Parno et al., IEEE S&P13].
(Highly optimized implementation from BCTV [Security14].)

Evaluation platform:

• Texas Advanced Computing Center (TACC), Stampede cluster

• Linux machines with Intel Xeon E5-2680, 32 GB of RAM



Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.

For evaluation, we reimplemented the BCTV system, including

• a toolchain for the simulated CPU in Java and C

• a CPU simulator in C, compiled using Pantry

Our implementation’s performance is within 15% of BCTV.

We use the Pinocchio back-end [Parno et al., IEEE S&P13].
(Highly optimized implementation from BCTV [Security14].)

Evaluation platform:

• Texas Advanced Computing Center (TACC), Stampede cluster

• Linux machines with Intel Xeon E5-2680, 32 GB of RAM



Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.

For evaluation, we reimplemented the BCTV system, including

• a toolchain for the simulated CPU in Java and C

• a CPU simulator in C, compiled using Pantry

Our implementation’s performance is within 15% of BCTV.

We use the Pinocchio back-end [Parno et al., IEEE S&P13].
(Highly optimized implementation from BCTV [Security14].)

Evaluation platform:

• Texas Advanced Computing Center (TACC), Stampede cluster

• Linux machines with Intel Xeon E5-2680, 32 GB of RAM



What is the maximum computation size for each system?

For an arithmetic circuit of ≈107 gates, we have:

Pantry BCTV Buffet

matrix multiplication
m ×m

m = 215 m = 7 m = 215

merge sort
k elements

k = 8 k = 32 k = 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n = 4,
`= 8

n = 16,
`= 160

n = 256,
`= 2900



What is the maximum computation size for each system?

For an arithmetic circuit of ≈107 gates, we have:

Pantry BCTV Buffet

matrix multiplication
m ×m

m = 215 m = 7 m = 215

merge sort
k elements

k = 8 k = 32 k = 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n = 4,
`= 8

n = 16,
`= 160

n = 256,
`= 2900



What is the maximum computation size for each system?

For an arithmetic circuit of ≈107 gates, we have:

Pantry BCTV Buffet

matrix multiplication
m ×m

m = 215 m = 7 m = 215

merge sort
k elements

k = 8 k = 32 k = 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n = 4,
`= 8

n = 16,
`= 160

n = 256,
`= 2900



What is the maximum computation size for each system?

For an arithmetic circuit of ≈107 gates, we have:

Pantry BCTV Buffet

matrix multiplication
m ×m

m = 215 m = 7 m = 215

merge sort
k elements

k = 8 k = 32 k = 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n = 4,
`= 8

n = 16,
`= 160

n = 256,
`= 2900



What is the maximum computation size for each system?

For an arithmetic circuit of ≈107 gates, we have:

Pantry BCTV Buffet

matrix multiplication
m ×m

m = 215 m = 7 m = 215

merge sort
k elements

k = 8 k = 32 k = 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n = 4,
`= 8

n = 16,
`= 160

n = 256,
`= 2900

These data establish ground truth. For apples-to-apples front-end
comparison, we now extrapolate to Buffet’s computation sizes.



What is the server’s cost for each system?

Extrapolated server execution time, normalized to Buffet

m=215 k=512 n=256, `=2900

P
an

tr
y

B
C

T
V

B
u f

fe
t

P
an

t r
y

B
C

T
V

B
uf

fe
t

P
an

tr
y

B
C

T
V

B
uf

fe
t



But we still have a long way to go!

Extrapolated server execution time, normalized to native execution

m=215 k=512 n=256, `=2900

P
a n

t r
y B

C
T

V

B
uf

f e
t

n a
ti

ve

P
an

tr
y

B
C

T
V

B
uf

fe
t

na
ti

ve

P
an

t r
y

B
C

T
V

B
uf

fe
t

n a
ti

ve

1



Recap

Buffet combines the best aspects of Pantry and BCTV.

+ Straight line computations are very efficient.

+ Buffet charges the programmer only for what is used.

+ General looping is transformed into FSM, efficiently compiled.

+ RAM interactions are efficient (see paper).

Buffet improves on Pantry and BCTV by 1–4 orders of magnitude.

Buffet still has limitations:

– No support for goto or function pointers.

– Like all systems in the area, server overheads are still massive.

http://www.pepper-project.org/



Recap

Buffet combines the best aspects of Pantry and BCTV.

+ Straight line computations are very efficient.

+ Buffet charges the programmer only for what is used.

+ General looping is transformed into FSM, efficiently compiled.

+ RAM interactions are efficient (see paper).

Buffet improves on Pantry and BCTV by 1–4 orders of magnitude.

Buffet still has limitations:

– No support for goto or function pointers.

– Like all systems in the area, server overheads are still massive.

http://www.pepper-project.org/



Recap

Buffet combines the best aspects of Pantry and BCTV.

+ Straight line computations are very efficient.

+ Buffet charges the programmer only for what is used.

+ General looping is transformed into FSM, efficiently compiled.

+ RAM interactions are efficient (see paper).

Buffet improves on Pantry and BCTV by 1–4 orders of magnitude.

Buffet still has limitations:

– No support for goto or function pointers.

– Like all systems in the area, server overheads are still massive.

http://www.pepper-project.org/


