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Proof-based verifiable computation enables outsourcing

client server

program,
inputs

outputs

Goal: A client wants to outsource a computation

• with strong correctness guarantees, and

• without assumptions about the server’s hardware
or how failures might occur.



Proof-based verifiable computation enables outsourcing

client server

program,
inputs

outputs
+ short proof

Approach: Server’s response includes short proof of correctness.

This solution is based on powerful theoretical tools.
[GMR85, BCC88, BFLS91, ALMSS92, AS92, Kilian92, LFKN92,
Shamir92, Micali00, BS05, BGHSV06, IKO07, GKR08]
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Verifiable computation still faces challenges

Buffet
(this work)

Tension between expressiveness and efficiency
Substantially

mitigated

Large (amortized) setup costs for the client;
massive server overhead

Not addressed
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Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

program
(subset of C)

arithmetic
circuit

theoretical
tools

(e.g., PCPs)

front-end

arithmetic circuit ⇐⇒ program
back-end

valid proof =⇒ execution follows
arithmetic circuit, respects inputs

client
executable

server
executable

Costs scale with arithmetic circuit size. So:

How can Buffet’s front-end efficiently represent
general-purpose C programs in arithmetic circuits?



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

i = i + 1; =⇒ i1 = i0 + 1;



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

if (i > 5)
i = i + 1;

else
i = i * 2;

=⇒

i1 = i0 + 1;
i2 = i0 * 2;
i3 = (i0 > 5) ?

i1 : i2;



Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

2. Conditionals: execute both branches and select desired result.

3. Loops: unroll at compile time. Loop bounds must be static.

4. Arithmetic, inequalities, and logical operations are supported.

i=0;
for (j=0; j<10; j++) {

i++;
}

=⇒

i = 0;
i0=i+1; // j == 0
i1=i0+1; // j == 1
· · ·
i9=i8+1; // j == 9
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1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results



Compiling nested loops

In a loop nest, inner loop unrolls into every iteration of outer loop.

i=0;
for (j=0; j<10; j++) {

i++;
for (k=0; k<2; k++) {

i=i*2;
}

}

=⇒

i = 0;
i0=i+1; // j == 0
i1=i0*2; // k == 0
i2=i1*2; // k == 1
i3=i2+1; // j == 1
i4=i3*2; // k == 0
i5=i4*2; // k == 1
· · ·



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}
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1. Read (inchar,length) pair.
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Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Read (inchar,length) pair.
2. Emit inchar, length times.

1

2



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do { /* bound= ??? */
output[j++] = inchar;
length--;

} while (length > 0);
}

At one extreme, a single character’s run length could be OUTLENGTH.
so this must be the inner bound.
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Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) { /* bound= ??? */

inchar = input[i++];
length = input[i++];

do { /* bound=OUTLENGTH */
output[j++] = inchar;
length--;

} while (length > 0);
}

At the other extreme, every character’s run length could be 1,
and the outer loop would iterate OUTLENGTH times.



Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string
with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

i = j = 0;
while (j < OUTLENGTH) { /* bound=OUTLENGTH */

inchar = input[i++];
length = input[i++];

do { /* bound=OUTLENGTH */
output[j++] = inchar;
length--;

} while (length > 0);
}

But: this code executes OUTLENGTH2 inner loop iterations,
and the resulting arithmetic circuit is quadratic in OUTLENGTH.



We can’t eliminate unrolling. What about nesting?

Consider:

1. Loop nests are equivalent to finite state machines.

2. Arithmetic circuits can efficiently represent FSMs.

Idea: transform loop nests into FSMs.
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FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

i = j = 0;
while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.

1 transitions to 2 unconditionally.
2 self-transitions when length > 0.
2 transitions to 1 when length <= 0.
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FSM Transformation: step 2

From the control flow graph

, we can build a state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];
length = input[i++];

do {
output[j++] = inchar;
length--;

} while (length > 0);
}

i = j = 0;
state = 1;
while (j < OUTLENGTH) {

if (state == 1) {
inchar = input[i++];
length = input[i++];
state = 2;

}
if (state == 2) {

output[j++] = inchar;
length--;
if (length <= 0) {

state = 1;
}

}
}
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FSM Transformation: step 2

From the control flow graph, we can build a state machine.

i = j = 0;

while (j < OUTLENGTH) {

inchar = input[i++];
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length--;
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}

i = j = 0;
state = 1;
while (j < OUTLENGTH) {

if (state == 1) {
inchar = input[i++];
length = input[i++];
state = 2;

}
if (state == 2) {

output[j++] = inchar;
length--;
if (length <= 0) {

state = 1;
}

}
}



Buffet’s FSM transformation: loop flattening

Buffet’s transformation extends loop flattening [Ghuloum & Fisher,
PPOPP95] with support for arbitrary loops, break, and continue.

Caveats:

• Programmer must tell Buffet # of steps to unroll the FSM.

• No goto in Buffet’s implementation (yet).

• No “program memory” ⇒ no function pointers.
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What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter.
What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition

, and unroll it.
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BCTV supports all of C, but like other systems requires bounded
execution (programmer chooses # of CPU steps).

But: BCTV pays the cost of an entire CPU for each program step.
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Evaluation questions

Using the same back-end for Pantry, BCTV, and Buffet, how do the
front-ends compare?

1. For a fixed arithmetic circuit size, what is the maximum
computation size each system can handle?

2. For a fixed computation size, what is the server’s cost under
each system?
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Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.

For evaluation, we reimplemented the BCTV system, including

• a toolchain for the simulated CPU in Java and C

• a CPU simulator in C, compiled using Pantry

Our implementation’s performance is within 15% of BCTV.

We use the Pinocchio back-end [Parno et al., IEEE S&P13].
(Highly optimized implementation from BCTV [Security14].)

Evaluation platform:

• Texas Advanced Computing Center (TACC), Stampede cluster

• Linux machines with Intel Xeon E5-2680, 32 GB of RAM
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What is the maximum computation size for each system?

For an arithmetic circuit of ≈107 gates, we have:

Pantry BCTV Buffet

matrix multiplication
m ×m

m = 215 m = 7 m = 215

merge sort
k elements

k = 8 k = 32 k = 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n = 4,
`= 8

n = 16,
`= 160

n = 256,
`= 2900
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What is the maximum computation size for each system?

For an arithmetic circuit of ≈107 gates, we have:

Pantry BCTV Buffet

matrix multiplication
m ×m

m = 215 m = 7 m = 215

merge sort
k elements

k = 8 k = 32 k = 512

Knuth-Morris-Pratt search
needle length = n
haystack length = `

n = 4,
`= 8

n = 16,
`= 160

n = 256,
`= 2900

These data establish ground truth. For apples-to-apples front-end
comparison, we now extrapolate to Buffet’s computation sizes.



What is the server’s cost for each system?

Extrapolated server execution time, normalized to Buffet

m=215 k=512 n=256, `=2900
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But we still have a long way to go!

Extrapolated server execution time, normalized to native execution

m=215 k=512 n=256, `=2900
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Recap

Buffet combines the best aspects of Pantry and BCTV.

+ Straight line computations are very efficient.

+ Buffet charges the programmer only for what is used.

+ General looping is transformed into FSM, efficiently compiled.

+ RAM interactions are efficient (see paper).

Buffet improves on Pantry and BCTV by 1–4 orders of magnitude.

Buffet still has limitations:

– No support for goto or function pointers.

– Like all systems in the area, server overheads are still massive.

http://www.pepper-project.org/
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