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Probabilistically checkable proofs (PCPs) and 
cryptography offer a solution [ALMSS92, Kilian STOC92]
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The theory provides strong security properties, 
but the costs are outrageous:

Verifying multiplication of 500×500 matrices would take 
more than 500 trillion CPU years (seriously).



• Pepper and Ginger [NDSS12, USENIX SECURITY12] reduce costs by 
a factor of >1020.

There is interest in reducing costs with built systems 
[HotOS11, NDSS12, USENIX SECURITY12, Cormode et al. ITCS12, Thaler et al. HotCloud12]



Unfortunately, this progress comes with a tradeoff:

• Achieve generality at the cost of quadratic running time for 
the server [HotOS11, NDSS12, USENIX SECURITY12].

• Achieve good asymptotics at the cost of generality [Cormode 

et al. ITCS12, Thaler et al. HotCloud12].

• Pepper and Ginger [NDSS12, USENIX SECURITY12] reduce costs by 
a factor of >1020.

There is interest in reducing costs with built systems 
[HotOS11, NDSS12, USENIX SECURITY12, Cormode et al. ITCS12, Thaler et al. HotCloud12]



Contributions of Zaatar:

Zaatar resolves the conflict between generality and 
expense, with a new proof encoding.

‣ Reduces server’s work from O(T2) to O(T log T), where 
T is the running time of the computation.

A system to compile programs in a subset of C into 
verifiable computations.



Rest of this talk:

Design of Zaatar

Experimental results
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Formulating a proof vector by encoding a solution 
to the system of equations
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The client interrogates the server, to verify

w = 
system of equations

proof vector
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  return <w,q>PCP tests
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Designing a new probabilistically checkable proof 
(PCP) encoding for linear PCPs

• The proof vector in prior works has redundancy, usually.

• [Gennaro et al. EUROCRYPT13] introduce quadratic 
arithmetic programs (QAPs) to represent computations.

• Our insight: QAPs can be used to design a new PCP.

‣ Eliminates (most) redundancy in Ginger’s proof 
vector, in a general-purpose way.



w = 

system of equations proof vector
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Verification protocol in Zaatar



Our refinement has several benefits

• Reduces costs

‣ The proof vector length is linear in the running time 
of the computation.

‣ The server’s work is now O(T log T), where T is the 
running time of the computation.

• Has theoretical significance

‣ It shows a connection between QAPs and PCPs (also 
shown by [Bitansky et al. TCC13], in parallel work).

‣ It resolves a conjecture of [Ishai et al. CCC07].
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Integrating the Zaatar protocol with Ginger [USENIX 

SECURITY12]

• Adapt Ginger’s compilation toolchain

‣ Enhance the compiler to accept programs in a subset 
of C, following [Parno et al. Oakland13].

• Integrate with Ginger’s distributed server that uses GPU 
acceleration for crypto operations.



Ginger’s compiler works in two phases

SFDL 
program

multi-stage front-end 
derived from Fairplay 
[Malkhi et al. USENIX 

Security04] 
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An example

increment(X)
  Y = X + 1

0 = X - <input>  
0 = Y - (X + 1)
0 = Y - <output>=



An example

Suppose the input is 6

increment(X)
  Y = X + 1

If the output is 7

There is a solution

If the output is 8

There is no solution

0 = X - <input>  
0 = Y - (X + 1)
0 = Y - <output>

Once the inputs are fixed, the system of equations 
has a solution if and only if the output is correct.

0 = X - 6  
0 = Y - (X + 1)
0 = Y - 7

0 = X - 6  
0 = Y - (X + 1)
0 = Y - 8

=



Encoding “Z = X != Y”

0 = (X - Y) •  M - Z

0 = (1-Z) • (X-Y)

Observe:

If X == Y, then Z will have to be set 0, to satisfy the first. 

If X != Y, then Z will have to be set 1, to satisfy the second.



Encoding conditional control flow

0 = X - M  

Y = M • 3 + (1-M) • 4

function(bool X)
  if (X)
    Y = 3
  else
    Y = 4  

=
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Adapting Ginger’s compiler toolchain for Zaatar

• Zaatar’s protocol requires equations in quadratic form

‣ A • B = C, where A, B, and C are degree-1 
polynomials.

• Ginger’s compiler outputs degree-2 equations, and our 
modification transforms them into quadratic form.

• Z1 • Z2 = Z3 • Z4 + Z5  is automatically split into:

Z3 • Z4 = Z6

Z1 • Z2 = Z6 + Z5



Zaatar’s compiler adapted from Ginger

C program
or

SFDL program

executables 
for the 

client and 
the server

system of 
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in quadratic 
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compiler’s
front-end

compiler’s
backend

ZCC

Recently, we enhanced the compiler to accept programs in 
a subset of C, following [Parno et al. Oakland13].
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Benchmarks and implementation

Benchmarks:

‣ all-pairs shortest paths, with m nodes in a graph

‣ longest common subsequence with strings of length m

‣ PAM clustering m samples with d dimensions each

‣ root finding for polynomials with m variables

‣ Fannkuch benchmark

Distributed implementation, to handle batching

C++ code; HTTP/Open MPI to distribute server’s work

CUDA to offload cryptographic work to GPUs



Evaluation testbed

A cluster at Texas Advanced Computing Center (TACC)

Each machine runs Linux on an Intel Xeon 2.53 GHz with 
48GB of RAM.

Evaluation method

Measure Zaatar’s performance from experiments.

Estimate Ginger’s performance from microbenchmarks, 
since it’s infeasible to run.



Evaluation questions

What are the costs of Zaatar’s server, relative to 
simply executing the computation?

What are the costs of Zaatar’s server, relative to the 
costs of Ginger’s server?

What are the break-even points under Zaatar?
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Zaatar’s server is many orders of magnitude more 
expensive than simply executing the computation

benchmark computation local Zaatar

all-pairs shortest paths (m=25) 8.1 ms 9.0 min

longest common subsequence (m=300) 1.4 ms 18.0 min

PAM clustering (m=20,d=128) 52 ms   8.7 min

root finding by bisection (m=256,L=8) 800 ms   6.5 min

Fannkuch benchmark (m=128,d=13) 0.8 ms   8.8 min

Performance from a recent, improved implementation.



Zaatar’s server is 1-6 orders of magnitude faster 
than Ginger’s server

Floyd-Warshall LCS PAM clustering root finding Fannkuch
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Evaluation questions

What are the costs of Zaatar’s server, relative to 
simply executing the computation?

What are the costs of Zaatar’s server, relative to the 
costs of Ginger’s server?

What are the break-even points under Zaatar?
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CPU time

computation costs

verification costs

break-even 
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The break-even batch sizes are 1-6 orders of 
magnitude smaller in Zaatar compared to Ginger

Floyd-Warshall LCS PAM clustering root finding Fannkuch
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Limitations of Zaatar

• Zaatar’s model of computation is general-purpose, but 
transformation into this model may not be efficient for 
all program constructs.

• The server’s asymptotic running time is good, but the 
constant is still large.

• The client has to batch-verify computations to gain 
from outsourcing.



Related work on verified computation

Make strong trust assumptions or give up being general-purpose:

Replication [Castro & Liskov TOCS02], trusted hardware [Chiesa & Tromer ICS10, Sadeghi et 

al. TRUST10], and auditing [Monrose et al. NDSS99, Haeberlen et al. SOSP07]

Special-purpose [Freivalds MFCS79, Golle & Mironov RSA01, Sion VLDB05, Benabbas et al. CRYPTO11, 
Boneh & Freeman EUROCRYPT11]

Proof-based verified computation

Theory of Probabilistically checkable proofs [Ben-Or STOC88, Babai STOC91, Kilian 
STOC92, Blum et al. JACM95, ALMSS92]

Via fully homomorphic encryption [Gennaro et al. CRYPTO10, Chung et al. CRYPTO10]

Theory that can be a foundation for systems [Ben-Sasson et al. STOC13, ITCS13]

Built systems that refine and evaluate proof-based verified computation 

Pepper and Ginger [HotOS11, NDSS12, USENIX SECURITY12] based on [Ishai et al. CCC07]

Interactive proofs [Thaler et al. ITCS12, HotCloud12] based on [Goldwasser et al. STOC08]

Pinocchio [Parno et al. Oakland13] based on [Gennaro et al. EUROCRYPT13]



Summary of Zaatar

Zaatar resolves the conflict between generality and 
expense, with a new proof encoding.

‣ Reduces server’s work from O(T2) to O(T log T), where 
T is the running time of the computation.

A system to compile programs in a subset of C into 
verifiable computations.

Verified computation can be almost practical, especially 
when the server is inexpensive and powerful.


