
Resolving the conflict between 
generality and plausibility in 

verified computation

★

★★

★

★

★
❖

Srinath Setty,  Benjamin Braun,  Victor Vu, 
Andrew J. Blumberg,  Bryan Parno,  and Michael Walfish

The University of Texas at Austin Microsoft Research★ ❖



output

compute-intensive task

client server



output

compute-intensive task

check output 
quickly using auxiliary 

information

client server

auxiliary information



Probabilistically checkable proofs (PCPs) and 
cryptography offer a solution [ALMSS92, Kilian STOC92]



Probabilistically checkable proofs (PCPs) and 
cryptography offer a solution with excellent properties

output

compute-intensive task

client server

tests
PCP: 1 10

[ALMSS92, Kilian STOC92]

client’s queries

responses



Probabilistically checkable proofs (PCPs) and 
cryptography offer a solution with excellent properties

output

compute-intensive task

client server

tests
PCP: 1 10

[ALMSS92, Kilian STOC92]

client’s queries

responses

“Fast” verification: client saves work (asymptotically)



Probabilistically checkable proofs (PCPs) and 
cryptography offer a solution with excellent properties

output

compute-intensive task

client server

tests
PCP: 1 10

[ALMSS92, Kilian STOC92]

client’s queries

responses

“Fast” verification: client saves work (asymptotically)

General-purpose: can outsource any computation



Probabilistically checkable proofs (PCPs) and 
cryptography offer a solution with excellent properties

output

compute-intensive task

client server

tests
PCP: 1 10

[ALMSS92, Kilian STOC92]

client’s queries

responses

“Fast” verification: client saves work (asymptotically)

General-purpose: can outsource any computation

Untrusted: no assumptions about the server



The theory provides strong security properties, 
but the costs are outrageous:

Verifying multiplication of 500×500 matrices would take 
more than 500 trillion CPU years (seriously).



• Pepper and Ginger [NDSS12, USENIX SECURITY12] reduce costs by 
a factor of >1020.

There is interest in reducing costs with built systems 
[HotOS11, NDSS12, USENIX SECURITY12, Cormode et al. ITCS12, Thaler et al. HotCloud12]



Unfortunately, this progress comes with a tradeoff:

• Achieve generality at the cost of quadratic running time for 
the server [HotOS11, NDSS12, USENIX SECURITY12].

• Achieve good asymptotics at the cost of generality [Cormode 

et al. ITCS12, Thaler et al. HotCloud12].

• Pepper and Ginger [NDSS12, USENIX SECURITY12] reduce costs by 
a factor of >1020.

There is interest in reducing costs with built systems 
[HotOS11, NDSS12, USENIX SECURITY12, Cormode et al. ITCS12, Thaler et al. HotCloud12]



Contributions of Zaatar:

Zaatar resolves the conflict between generality and 
expense, with a new proof encoding.

‣ Reduces server’s work from O(T2) to O(T log T), where 
T is the running time of the computation.

A system to compile programs in a subset of C into 
verifiable computations.



Rest of this talk:

Design of Zaatar

Experimental results

1

2



output

compute-intensive task

responses:

client’s queries: q1, q2, q3, ...

, 9 , ...2

formulate a 
proof vector

client server

PCP tests

Ginger [USENIX SECURITY12] refines the protocol of [Ishai et 

al. CCC 07]



Formulating a proof vector by encoding a solution 
to the system of equations

computation 
represented as a 

system of equations
over a finite field

proof vector

2
5

10
4
3

12
22

2
1
0
4
9

22
44

4

[ALMSS92]

quadratic-sized 
encoding

0 = X1 - 2  
0 = X2 - 5
0 = X3 - (X1 × X2)
....
0 = Y - 22

solution to 
equations

computation



output

compute-intensive task

responses:

client’s queries: q1, q2, q3, ...

, 9 , ...2

client server

PCP tests

✓  

formulate a 
proof vector



The client interrogates the server, to verify

w = 
system of equations

proof vector

2
1
0

4

q1, q2, q3, ...

response(q):

queries: q1, q2, q3, ...

  return <w,q>PCP tests

responses

client server

accept/reject

[ALMSS92]

computation



output

compute-intensive task

responses:

one set of queries

, 9 , ...2

client server

PCP tests

The client amortizes the query generation costs 
via batching

responses: , 7 , ...5

responses: , 2 , ...3

multiple proof vectors
2
5
1

4

0
2
0

2

0
1
0

9



output

compute-intensive task

responses:

client’s queries: q1, q2, q3, ...

, 1 , ...0

client server

PCP tests
✓  

✓  

formulate a 
proof vector



Designing a new probabilistically checkable proof 
(PCP) encoding for linear PCPs

• The proof vector in prior works has redundancy, usually.

• [Gennaro et al. EUROCRYPT13] introduce quadratic 
arithmetic programs (QAPs) to represent computations.

• Our insight: QAPs can be used to design a new PCP.

‣ Eliminates (most) redundancy in Ginger’s proof 
vector, in a general-purpose way.



w = 

system of equations proof vector

2
1
0

4

q1, q2, q3, ...

response(q):

q1, q2, q3, ...

  return <w,q>
responses

client server

accept/reject

1

divisibility correction test

2

linear in the size of 
the computation

PCP tests

[ALMSS92]

Verification protocol in Zaatar



Our refinement has several benefits

• Reduces costs

‣ The proof vector length is linear in the running time 
of the computation.

‣ The server’s work is now O(T log T), where T is the 
running time of the computation.

• Has theoretical significance

‣ It shows a connection between QAPs and PCPs (also 
shown by [Bitansky et al. TCC13], in parallel work).

‣ It resolves a conjecture of [Ishai et al. CCC07].



Design of Zaatar

Reducing the size of the proof vector

Integrating with Ginger [USENIX SECURITY12]

Experimental results

1

2

✓  



Integrating the Zaatar protocol with Ginger [USENIX 

SECURITY12]

• Adapt Ginger’s compilation toolchain

‣ Enhance the compiler to accept programs in a subset 
of C, following [Parno et al. Oakland13].

• Integrate with Ginger’s distributed server that uses GPU 
acceleration for crypto operations.



Ginger’s compiler works in two phases

SFDL 
program

multi-stage front-end 
derived from Fairplay 
[Malkhi et al. USENIX 

Security04] 

compiler’s
backend

system of 
equations

executables 
for the 

client and 
the server

intermediate 
format

template 
equations 

for !=, <, >, 
>=, <= ...



An example

increment(X)
  Y = X + 1

0 = X - <input>  
0 = Y - (X + 1)
0 = Y - <output>=



An example

Suppose the input is 6

increment(X)
  Y = X + 1

If the output is 7

There is a solution

If the output is 8

There is no solution

0 = X - <input>  
0 = Y - (X + 1)
0 = Y - <output>

Once the inputs are fixed, the system of equations 
has a solution if and only if the output is correct.

0 = X - 6  
0 = Y - (X + 1)
0 = Y - 7

0 = X - 6  
0 = Y - (X + 1)
0 = Y - 8

=



Encoding “Z = X != Y”

0 = (X - Y) •  M - Z

0 = (1-Z) • (X-Y)

Observe:

If X == Y, then Z will have to be set 0, to satisfy the first. 

If X != Y, then Z will have to be set 1, to satisfy the second.



Encoding conditional control flow

0 = X - M  

Y = M • 3 + (1-M) • 4

function(bool X)
  if (X)
    Y = 3
  else
    Y = 4  

=



SFDL 
program

multi-stage front-end 
derived from Fairplay 
[Malkhi et al. USENIX 

Security04] 

compiler’s
backend

system of 
equations

executables 
for the 

client and 
the server

intermediate 
format

template 
equations 

for !=, <, >, 
>=, <= ...

Ginger’s compiler works in two phases



Adapting Ginger’s compiler toolchain for Zaatar

• Zaatar’s protocol requires equations in quadratic form

‣ A • B = C, where A, B, and C are degree-1 
polynomials.

• Ginger’s compiler outputs degree-2 equations, and our 
modification transforms them into quadratic form.

• Z1 • Z2 = Z3 • Z4 + Z5  is automatically split into:

Z3 • Z4 = Z6

Z1 • Z2 = Z6 + Z5



Zaatar’s compiler adapted from Ginger

C program
or

SFDL program

executables 
for the 

client and 
the server

system of 
equations

in quadratic 
form

compiler’s
front-end

compiler’s
backend

ZCC

Recently, we enhanced the compiler to accept programs in 
a subset of C, following [Parno et al. Oakland13].



Design of Zaatar

Experimental results

1

2

✓  



Benchmarks and implementation

Benchmarks:

‣ all-pairs shortest paths, with m nodes in a graph

‣ longest common subsequence with strings of length m

‣ PAM clustering m samples with d dimensions each

‣ root finding for polynomials with m variables

‣ Fannkuch benchmark

Distributed implementation, to handle batching

C++ code; HTTP/Open MPI to distribute server’s work

CUDA to offload cryptographic work to GPUs



Evaluation testbed

A cluster at Texas Advanced Computing Center (TACC)

Each machine runs Linux on an Intel Xeon 2.53 GHz with 
48GB of RAM.

Evaluation method

Measure Zaatar’s performance from experiments.

Estimate Ginger’s performance from microbenchmarks, 
since it’s infeasible to run.



Evaluation questions

What are the costs of Zaatar’s server, relative to 
simply executing the computation?

What are the costs of Zaatar’s server, relative to the 
costs of Ginger’s server?

What are the break-even points under Zaatar?

1

2

3



Zaatar’s server is many orders of magnitude more 
expensive than simply executing the computation

benchmark computation local Zaatar

all-pairs shortest paths (m=25) 8.1 ms 9.0 min

longest common subsequence (m=300) 1.4 ms 18.0 min

PAM clustering (m=20,d=128) 52 ms   8.7 min

root finding by bisection (m=256,L=8) 800 ms   6.5 min

Fannkuch benchmark (m=128,d=13) 0.8 ms   8.8 min

Performance from a recent, improved implementation.



Zaatar’s server is 1-6 orders of magnitude faster 
than Ginger’s server

Floyd-Warshall LCS PAM clustering root finding Fannkuch

100

103

106

109

ru
nn

in
g 

tim
e 

(s
ec

on
ds

) Ging
er

Za
ata

r

(m=25) (m=300) (m=20,d=128) (m=256,L=8) (m=128,d=13)



Evaluation questions

What are the costs of Zaatar’s server, relative to 
simply executing the computation?

What are the costs of Zaatar’s server, relative to the 
costs of Ginger’s server?

What are the break-even points under Zaatar?

1

2

3

# instances

CPU time

computation costs

verification costs

break-even 
batch size

✓  

✓  



The break-even batch sizes are 1-6 orders of 
magnitude smaller in Zaatar compared to Ginger

Floyd-Warshall LCS PAM clustering root finding Fannkuch

103

107

1015

br
ea

k-
ev

en
 b

at
ch

 s
iz

e

1011

(m=25) (m=300) (m=20,d=128) (m=256,L=8) (m=128,d=13)

Ging
er

Za
ata

r



Design of Zaatar

Experimental results

Limitations, prior work, and summary

1

2

✓  

3

✓  



Limitations of Zaatar

• Zaatar’s model of computation is general-purpose, but 
transformation into this model may not be efficient for 
all program constructs.

• The server’s asymptotic running time is good, but the 
constant is still large.

• The client has to batch-verify computations to gain 
from outsourcing.



Related work on verified computation

Make strong trust assumptions or give up being general-purpose:

Replication [Castro & Liskov TOCS02], trusted hardware [Chiesa & Tromer ICS10, Sadeghi et 

al. TRUST10], and auditing [Monrose et al. NDSS99, Haeberlen et al. SOSP07]

Special-purpose [Freivalds MFCS79, Golle & Mironov RSA01, Sion VLDB05, Benabbas et al. CRYPTO11, 
Boneh & Freeman EUROCRYPT11]

Proof-based verified computation

Theory of Probabilistically checkable proofs [Ben-Or STOC88, Babai STOC91, Kilian 
STOC92, Blum et al. JACM95, ALMSS92]

Via fully homomorphic encryption [Gennaro et al. CRYPTO10, Chung et al. CRYPTO10]

Theory that can be a foundation for systems [Ben-Sasson et al. STOC13, ITCS13]

Built systems that refine and evaluate proof-based verified computation 

Pepper and Ginger [HotOS11, NDSS12, USENIX SECURITY12] based on [Ishai et al. CCC07]

Interactive proofs [Thaler et al. ITCS12, HotCloud12] based on [Goldwasser et al. STOC08]

Pinocchio [Parno et al. Oakland13] based on [Gennaro et al. EUROCRYPT13]



Summary of Zaatar

Zaatar resolves the conflict between generality and 
expense, with a new proof encoding.

‣ Reduces server’s work from O(T2) to O(T log T), where 
T is the running time of the computation.

A system to compile programs in a subset of C into 
verifiable computations.

Verified computation can be almost practical, especially 
when the server is inexpensive and powerful.


