Efficient RAM and control flow in verifiable outsourced computation

Riad S. Wahby*, Srinath Setty†‡, Zuocheng Ren†, Andrew J. Blumberg†, and Michael Walfish*

*New York University
†The University of Texas at Austin
‡now at Microsoft Research

February 10, 2015
Proof-based verifiable computation enables outsourcing

Goal: A client wants to outsource a computation
- with strong correctness guarantees, and
- without assumptions about the server’s hardware or how failures might occur.
Proof-based verifiable computation enables outsourcing

Approach: Server’s response includes short proof of correctness.

This solution is based on powerful theoretical tools.

[GMR85, BCC88, BFLS91, ALMSS92, AS92, Kilian92, LFKN92, Shamir92, Micali00, BS05, BGHSV06, IKO07, GKR08]
Related work in proof-based verification

<table>
<thead>
<tr>
<th>setup costs</th>
<th>applicable computations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>regular structure</td>
</tr>
<tr>
<td></td>
<td>straight line</td>
</tr>
<tr>
<td></td>
<td>pure</td>
</tr>
<tr>
<td></td>
<td>stateful</td>
</tr>
<tr>
<td></td>
<td>general control flow</td>
</tr>
</tbody>
</table>

| none | Thaler, CMT, TRMP |
| | [CRYPTO13, ITCS12, HotCloud12] |

| low | Allspice |
| | [IEEE S&P13] |

med	Pepper
	[NDSS12]
	Ginger
	[Security12]
	Zaatar
	[Eurosys13], Pinocchio
	Pantry
	[SOSP13]

| high | BCTV, BCGTV |
| | [Security14, CRYPTO13] |
Related work in proof-based verification

<table>
<thead>
<tr>
<th>setup costs</th>
<th>applicable computations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>regular structure</td>
</tr>
<tr>
<td>none</td>
<td>Thaler, CMT, TRMP [CRYPTO13, ITCS12, HotCloud12]</td>
</tr>
<tr>
<td>low</td>
<td>Allspice [IEEE S&P13]</td>
</tr>
<tr>
<td>high</td>
<td>BCTV, BCGTV [Security14, CRYPTO13]</td>
</tr>
</tbody>
</table>
Related work in proof-based verification

<table>
<thead>
<tr>
<th>setup costs</th>
<th>applicable computations</th>
<th>general control flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>regular structure</td>
<td>pure</td>
</tr>
<tr>
<td></td>
<td>straight line</td>
<td>stateful</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>Thaler, CMT, TRMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[CRYPTO13, ITCS12, HotCloud12]</td>
<td></td>
</tr>
<tr>
<td>med</td>
<td>Allspice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[IEEE S&P13]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pepper</td>
<td>Ginger</td>
</tr>
<tr>
<td></td>
<td>[NDSS12]</td>
<td>[Security12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zaatar [Eurosys13], Pinocchio [IEEE S&P13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pantry [SOSP13]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCTV, BCGTV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Security14, CRYPTO13]</td>
<td></td>
</tr>
</tbody>
</table>
Related work in proof-based verification

<table>
<thead>
<tr>
<th>setup costs</th>
<th>applicable computations</th>
<th>general control flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Thaler, CMT, TRMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[CRYPTO13, ITCS12,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HotCloud12]</td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>Allspice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[IEEE S&P13]</td>
<td></td>
</tr>
<tr>
<td>med</td>
<td>Pepper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[NDSS12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ginger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Security12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zaatar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Eurosys13], Pinocchio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[IEEE S&P13]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pantry</td>
<td>Buffet (this work)</td>
</tr>
<tr>
<td></td>
<td>[SOSP13]</td>
<td></td>
</tr>
<tr>
<td>high</td>
<td>BCTV, BCGTV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Security14, CRYPTO13]</td>
<td></td>
</tr>
</tbody>
</table>
Verifiable computation still faces challenges

Tension between expressiveness and efficiency

Large (amortized) setup costs for the client; massive server overhead

Buffet
(this work)

Substantially mitigated

Not addressed
The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results
The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results
Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.
Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.
Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.
Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

front-end

arithmetic circuit ⇐⇒ program

back-end

valid proof ⇒ execution follows arithmetic circuit, respects inputs

client executable

server executable

program (subset of C)

arithmetic circuit

theoretical tools (e.g., PCPs)
Verifiable computation overview: common machinery

Buffet and its predecessors share a common framework.

Costs scale with arithmetic circuit size. So:

How can Buffet’s front-end efficiently represent general-purpose C programs in arithmetic circuits?
Compiling programs to circuits in Pantry [SOSP13] (and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.

\[i = i + 1; \quad \Rightarrow \quad i + 1 = i0 + 1; \]
These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.
2. Conditionals: execute both branches and select desired result.

```c
if (i > 5)
    i = i + 1;
else
    i = i * 2;
```

⇒

```c
i1 = i0 + 1;
i2 = i0 * 2;
i3 = (i0 > 5) ?
    i1 : i2;
```
These compilers handle a subset of C:
1. Assignment: allocate a fresh wire for each assignment.
2. Conditionals: execute both branches and select desired result.
3. Loops: unroll at compile time. Loop bounds must be static.

```c
i=0;
for (j=0; j<10; j++) {
    i++;
}
```

```
i = 0;
i0=i+1; // j == 0
i1=i0+1; // j == 1
...
i9=i8+1; // j == 9
```
Compiling programs to circuits in Pantry [SOSP13]
(and Zaatar [Eurosys13] and Pinocchio [IEEE S&P13])

These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.
2. Conditionals: execute both branches and select desired result.
3. Loops: unroll at compile time. Loop bounds must be static.
4. Arithmetic, inequalities, and logical operations are supported.
These compilers handle a subset of C:

1. Assignment: allocate a fresh wire for each assignment.
2. Conditionals: execute both branches and select desired result.
3. Loops: unroll at compile time. Loop bounds must be static.
4. Arithmetic, inequalities, and logical operations are supported.

Buffet’s key challenge: how can we support general C programs with arbitrary control flow, including break, continue, and data dependent looping?
These compilers handle a subset of C:

1. **Assignment**: allocate a fresh wire for each assignment.
2. **Conditionals**: execute both branches and select desired result.
3. **Loops**: unroll at compile time. Loop bounds must be **static**.
4. **Arithmetic, inequalities, and logical operations** are supported.

Buffet’s **key challenge**: how can we support *general* C programs with arbitrary control flow, including break, continue, and data dependent looping?

Buffet also adapts and refines a previous approach to verified RAM [BCGT12, BCGTV13, BCTV14] (see paper).
The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results
Compiling nested loops

In a loop nest, inner loop unrolls into every iteration of outer loop.

```
i=0;
for (j=0; j<10; j++) {
    i++;
    for (k=0; k<2; k++) {
        i=i*2;
    }
}
```

```
i = 0;
i0=i+1;    // j == 0
i1=i0*2;   // k == 0
i2=i1*2;   // k == 1
i3=i2+1;   // j == 1
i4=i3*2;   // k == 0
i5=i4*2;   // k == 1
...
```
Consider a decoder for a run-length encoded string with output size OUTLENGTH:

“a5b2” ⇒ “aaaaaabb”

```c
i = j = 0;
while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];

    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```
Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

```c
i = j = 0;
while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];

    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```

1. Read (inchar,length) pair.
Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string with output size OUT_LENGTH:

“a5b2” ⇒ “aaaaabb”

```c
i = j = 0;
while (j < OUT_LENGTH) {
    char inchar = input[i++];
    int length = input[i++];
    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```

1. Read (inchar, length) pair.
2. Emit inchar, length times.
Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string with output size \texttt{OUTLENGTH}:

"a5b2" \Rightarrow "aaaaabb"

```c
i = j = 0;
while (j < \texttt{OUTLENGTH}) {
    \texttt{inchar} = \texttt{input}[i++];
    \texttt{length} = \texttt{input}[i++];

    do { /* bound= ??? */
        \texttt{output}[j++] = \texttt{inchar};
        \texttt{length}--;
    } while (\texttt{length} > 0);
}
```

At one extreme, a single character’s run length could be \texttt{OUTLENGTH}. so this must be the inner bound.
Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string with output size OUTLENGTH:

“a5b2” ⇒ “aaaaaabb”

```c
i = j = 0;
while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];

    do {                      /* bound=OUTLENGTH */
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```
Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string with output size OUTLENGTH:

“a5b2” ⇒ “aaaaabb”

```c
i = j = 0;
while (j < OUTLENGTH) {
    /* bound= ??? */
    inchar = input[i++];
    length = input[i++];

    do {
        /* bound=OUTLENGTH */
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```

At the other extreme, every character’s run length could be 1, and the outer loop would iterate OUTLENGTH times.
Compiling nested loops with data dependent bounds

Consider a decoder for a run-length encoded string with output size \(\text{OUTLENGTH} \):

“a5b2” \(\Rightarrow\) “aaaaabb”

\[
\begin{align*}
i &= j = 0; \\
\text{while} \ (j < \text{OUTLENGTH}) \ {\{} & \text{/* bound=OUTLENGTH */} \\
& \quad \text{inchar} = \text{input}[i++]; \\
& \quad \text{length} = \text{input}[i++]; \\
& \quad \text{do} \ {\{} & \text{/* bound=OUTLENGTH */} \\
& \quad \quad \text{output}[j++] = \text{inchar}; \\
& \quad \quad \text{length}--; \\
& \quad \} \text{ while} \ (\text{length} > 0); \\
& {\}}
\end{align*}
\]

But: this code executes \(\text{OUTLENGTH}^2 \) inner loop iterations, and the resulting arithmetic circuit is quadratic in \(\text{OUTLENGTH} \).
We can’t eliminate unrolling. What about nesting?

Consider:
1. Loop nests are equivalent to finite state machines.
2. Arithmetic circuits can efficiently represent FSMs.

Idea: transform loop nests into FSMs.
We can’t eliminate unrolling. What about nesting?

Consider:

1. Loop nests are equivalent to finite state machines.
2. Arithmetic circuits can efficiently represent FSMs.
We can’t eliminate unrolling. What about nesting?

Consider:

1. Loop nests are equivalent to finite state machines.
2. Arithmetic circuits can efficiently represent FSMs.

Idea: transform loop nests into FSMs.
FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

```c
i = j = 0;
while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];
    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```
FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

```c
i = j = 0;
while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];
    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.
 1 transitions to 2 unconditionally.
 2 self-transitions when LENGTH > 0.
 2 transitions to 1 when LENGTH <= 0.
FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

```c
i = j = 0;
while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];
    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.
 1 transitions to 2 unconditionally.
FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

\[
i = j = 0; \quad \text{while} \ (j < \text{OUTLENGTH}) \{
 \text{inchar} = \text{input}[i++];
 \text{length} = \text{input}[i++];
\}
\]

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.
 1 transitions to 2 unconditionally.
 2 self-transitions when length > 0.

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.
 1 transitions to 2 unconditionally.
 2 self-transitions when length > 0.
FSM Transformation: step 1

We can build a control flow graph for the RLE decoder:

```c
i = j = 0;
while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];
    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```

1. Identify vertices: straight line code segments.
2. Identify edges: control flow between segments.
 1 transitions to 2 unconditionally.
 2 self-transitions when length > 0.
 2 transitions to 1 when length <= 0.
FSM Transformation: step 2

From the control flow graph

1

length <= 0

2

length > 0
From the control flow graph, we can build a state machine.

```c
i = j = 0;
state = 1;
while (j < OUTLENGTH) {
    if (state == 1) {
        inchar = input[i++];
        length = input[i++];
        state = 2;
    }
    if (state == 2) {
        output[j++] = inchar;
        length--;
        if (length <= 0) {
            state = 1;
        }
    }
}
```
From the control flow graph, we can build a state machine.

```c
i = j = 0;

while (j < OUTLENGTH) {
    inchar = input[i++];
    length = input[i++];
    do {
        output[j++] = inchar;
        length--;
    } while (length > 0);
}
```

```c
i = j = 0;
state = 1;

while (j < OUTLENGTH) {
    if (state == 1) {
        inchar = input[i++];
        length = input[i++];
        state = 2;
    }
    if (state == 2) {
        output[j++] = inchar;
        length--;
        if (length <= 0) {
            state = 1;
        }
    }
}
```
Buffet’s FSM transformation: *loop flattening*

Buffet’s transformation extends *loop flattening* [Ghuloum & Fisher, PPOPP95] with support for arbitrary loops, break, and continue.
Buffet’s FSM transformation: *loop flattening*

Buffet’s transformation extends *loop flattening* [Ghuloum & Fisher, PPOPP95] with support for arbitrary loops, break, and continue.

Caveats:

- Programmer must tell Buffet # of steps to unroll the FSM.
- No goto in Buffet’s implementation (yet).
- No “program memory” \Rightarrow no function pointers.
What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter. What if we just had a program counter, registers, etc?
What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter. What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition

fetch-decode-
execute

CPU state:
pc, regs, . . .
What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter. What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition, and unroll it.

```
fetch-decode-execute step 1
CPU state: pc, regs, ...
```

```
fetch-decode-execute step 2
CPU state: pc, regs, ...
```

```
fetch-decode-execute step T
CPU state: pc, regs, ...
```

BCTV supports all of C, but like other systems requires bounded execution (programmer chooses # of CPU steps). But: BCTV pays the cost of an entire CPU for each program step.
What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter. What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition, and unroll it.

BCTV supports all of C, but like other systems requires bounded execution (programmer chooses \# of CPU steps).
What if we unrolled a whole CPU? [BCTV, Security14]

The state variable in the FSM is like a coarse program counter. What if we just had a program counter, registers, etc?

This is the approach of BCTV:
Represent a CPU transition, and unroll it.

BCTV supports all of C, but like other systems requires bounded execution (programmer chooses # of CPU steps).

But: BCTV pays the cost of an entire CPU for each program step.
The rest of this talk

1. Background: the proof-based verification framework

2. Buffet: dynamic control flow in arithmetic circuits

3. Experimental results
program (subset of C) \rightarrow \text{arithmetic circuit} \quad \text{front-end}

\text{arithmetic circuit} \iff \text{program}

\text{theoretical tools (e.g., PCPs)} \rightarrow \text{valid proof} \rightarrow \\
\text{execution follows arithmetic circuit, respects inputs} \quad \text{back-end}

\text{client executable} \quad \text{server executable}
Evaluation questions

Using the same back-end for Pantry, BCTV, and Buffet, how do the front-ends compare?

1. For a fixed arithmetic circuit size, what is the maximum computation size each system can handle?
Using the same back-end for Pantry, BCTV, and Buffet, how do the front-ends compare?

1. For a fixed arithmetic circuit size, what is the maximum computation size each system can handle?

2. For a fixed computation size, what is the server’s cost under each system?
Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.
Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.

For evaluation, we reimplemented the BCTV system, including
- a toolchain for the simulated CPU in Java and C
- a CPU simulator in C, compiled using Pantry

Our implementation’s performance is within 15% of BCTV.
Implementation

For evaluation, we reimplemented the BCTV system, including
- a toolchain for the simulated CPU in Java and C
- a CPU simulator in C, compiled using Pantry
Our implementation’s performance is within 15% of BCTV.

We use the Pinocchio back-end [Parno et al., IEEE S&P13]. (Highly optimized implementation from BCTV [Security14].)
Implementation

Buffet front-end: builds on Pantry [Braun et al., SOSP13].
FSM transform: source-to-source compiler built on top of clang.

For evaluation, we reimplemented the BCTV system, including
 - a toolchain for the simulated CPU in Java and C
 - a CPU simulator in C, compiled using Pantry
Our implementation’s performance is within 15% of BCTV.

We use the Pinocchio back-end [Parno et al., IEEE S&P13].
(Highly optimized implementation from BCTV [Security14].)

Evaluation platform:
 - Texas Advanced Computing Center (TACC), Stampede cluster
 - Linux machines with Intel Xeon E5-2680, 32 GB of RAM
What is the maximum computation size for each system?

For an arithmetic circuit of \(\approx 10^7 \) gates, we have:

<table>
<thead>
<tr>
<th></th>
<th>Pantry</th>
<th>BCTV</th>
<th>Buffet</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix multiplication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m \times m)</td>
<td>(m = 215)</td>
<td>(m = 7)</td>
<td>(m = 215)</td>
</tr>
<tr>
<td>merge sort</td>
<td>(k = 8)</td>
<td>(k = 32)</td>
<td>(k = 512)</td>
</tr>
<tr>
<td>(k) elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knuth-Morris-Pratt search</td>
<td>(n = 4,)</td>
<td>(n = 16,)</td>
<td>(n = 256,)</td>
</tr>
<tr>
<td>needle length = (n)</td>
<td>(\ell = 8)</td>
<td>(\ell = 160)</td>
<td>(\ell = 2900)</td>
</tr>
</tbody>
</table>
What is the maximum computation size for each system?

For an arithmetic circuit of $\approx 10^7$ gates, we have:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Pantry</th>
<th>BCTV</th>
<th>Buffet</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix multiplication</td>
<td>$m = 215$</td>
<td>$m = 7$</td>
<td>$m = 215$</td>
</tr>
<tr>
<td>$m \times m$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>merge sort</td>
<td>$k = 8$</td>
<td>$k = 32$</td>
<td>$k = 512$</td>
</tr>
<tr>
<td>k elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knuth-Morris-Pratt search</td>
<td>$n = 4$, $\ell = 8$</td>
<td>$n = 16$, $\ell = 160$</td>
<td>$n = 256$, $\ell = 2900$</td>
</tr>
<tr>
<td>needle length = n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>haystack length = ℓ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is the maximum computation size for each system?

For an arithmetic circuit of $\approx 10^7$ gates, we have:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Pantry</th>
<th>BCTV</th>
<th>Buffet</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix multiplication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m \times m$</td>
<td>$m = 215$</td>
<td>$m = 7$</td>
<td>$m = 215$</td>
</tr>
<tr>
<td>merge sort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k elements</td>
<td>$k = 8$</td>
<td>$k = 32$</td>
<td>$k = 512$</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt search</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>needle length = n</td>
<td>$n = 4$, $n = 16$, $n = 256$,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>haystack length = ℓ</td>
<td>$\ell = 8$</td>
<td>$\ell = 160$</td>
<td>$\ell = 2900$</td>
</tr>
</tbody>
</table>
What is the maximum computation size for each system?

For an arithmetic circuit of $\approx 10^7$ gates, we have:

<table>
<thead>
<tr>
<th></th>
<th>Pantry</th>
<th>BCTV</th>
<th>Buffet</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix multiplication</td>
<td>$m = 215$</td>
<td>$m = 7$</td>
<td>$m = 215$</td>
</tr>
<tr>
<td>$m \times m$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>merge sort</td>
<td>$k = 8$</td>
<td>$k = 32$</td>
<td>$k = 512$</td>
</tr>
<tr>
<td>k elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knuth-Morris-Pratt search</td>
<td>$n = 4, n = 16, n = 256,$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>needle length $= n$</td>
<td>$\ell = 8, \ell = 160, \ell = 2900$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>haystack length $= \ell$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is the maximum computation size for each system?

For an arithmetic circuit of $\approx 10^7$ gates, we have:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Pantry</th>
<th>BCTV</th>
<th>Buffet</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix multiplication $m \times m$</td>
<td>$m = 215$</td>
<td>$m = 7$</td>
<td>$m = 215$</td>
</tr>
<tr>
<td>merge sort k elements</td>
<td>$k = 8$</td>
<td>$k = 32$</td>
<td>$k = 512$</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt search</td>
<td>$n = 4, \ell = 8$</td>
<td>$n = 16, \ell = 160$</td>
<td>$n = 256, \ell = 2900$</td>
</tr>
</tbody>
</table>

These data establish ground truth. For apples-to-apples front-end comparison, we now extrapolate to Buffet’s computation sizes.
What is the server’s cost for each system?

Extrapolated server execution time, normalized to Buffet

- **Matrix multiplication**: $m=215$
- **Merge sort**: $k=512$
- **Knuth-Morris-Pratt search**: $n=256$, $\ell=2900$
But we still have a long way to go!

Extrapolated server execution time, normalized to native execution

- Matrix multiplication: \(m=215 \)
- Merge sort: \(k=512 \)
- Knuth-Morris-Pratt search: \(n=256, \ell=2900 \)
Recap

Buffet combines the **best aspects** of Pantry and BCTV.

+ Straight line computations are very efficient.
+ Buffet charges the programmer only for what is used.
+ General looping is transformed into FSM, efficiently compiled.
+ RAM interactions are efficient (see paper).

Buffet improves on Pantry and BCTV by 1–4 orders of magnitude.
Recap

Buffet combines the best aspects of Pantry and BCTV.
+ Straight line computations are very efficient.
+ Buffet charges the programmer only for what is used.
+ General looping is transformed into FSM, efficiently compiled.
+ RAM interactions are efficient (see paper).

Buffet improves on Pantry and BCTV by 1–4 orders of magnitude.

Buffet still has limitations:
- No support for goto or function pointers.
- Like all systems in the area, server overheads are still massive.
Recap

Buffet combines the best aspects of Pantry and BCTV.
+ Straight line computations are very efficient.
+ Buffet charges the programmer only for what is used.
+ General looping is transformed into FSM, efficiently compiled.
+ RAM interactions are efficient (see paper).

Buffet improves on Pantry and BCTV by 1–4 orders of magnitude.

Buffet still has limitations:
- No support for goto or function pointers.
- Like all systems in the area, server overheads are still massive.

http://www.pepper-project.org/